
1 Factorized mixtures of conditional Gaussian scale mixtures

The conditional distribution of a mixture of Gaussian scale mixtures (GSMs) over one set of pixels
y given a disjoint set of pixels x takes the form [5]

p(y | x) =
∑
cs

p(c, s | x)p(y | x, c, s), (1)

p(c, s | x) ∝ |λcsKc|
1
2 exp

(
−1

2
λcsx

>Kcx

)
, (2)

p(y | x, c, s) = |Mc|
1
2 exp

(
−1

2
λcs(y −Acx)

>Mc(y −Acx)

)
/(2π)

D
2 , (3)

where λcs > 0 and Mc and Kc are positive definite. This assumes that the means of the GSMs are
zero and the weights of the components are equal. We here consider the more general form

p(c, s | x) ∝ πcs|λcsKc|
1
2 exp

(
−1

2
λcs(x− uc)

>Kc(x− uc)

)
, (4)

p(y | x, c, s) = |Mc|
1
2 exp

(
−1

2
λcs(y −Acx−mc)

>Mc(y −Acx−mc)

)
/(2π)

D
2 , (5)

with πcs > 0. This parametrization has two problems. First, the positivity constraints make this
parametrization unsuitable for stochastic gradient descent. We can easily solve this problem by
reparametrization. Second, the number of parameters grows quadratically with the dimensionality
of x. If x represents a causal neighborhood, then the number of parameters grows quartically with
the width of the neighborhood. We therefore replace the matrices Kc with low-rank approximations,

Kc =
∑
n

β2
cnbnb

>
n , (6)

using rank one basis matrices bnb
>
n which are furthermore shared between the components. The

squaring of the weights βcn ensures that the Kc stay positive semi-definite. This constraint may be
dropped in the MCGSM, but we did not explore this option. After reparametrizing, we obtain

p(c, s | x) ∝ exp

(
ηcs −

1

2
eαcs

∑
n

β2
cn(b

>
nx)

2 + eαcsw>c x

)
, (7)

p(y | x, c, s) = |Lc| exp
(
M

2
αcs −

1

2
eαcs

(
y −A>c x−mc

)>
LcL

>
c

(
y −A>c x−mc

))
/(2π)

1
2 ,

(8)

where Lc is a lower-triangular matrix. We found empirically that the parameters mc and wc do not
make a significant difference for quantitative performance and therefore set them to zero.

2 BSDS300

2.1 Ensembles

We rotate and flip the 63 dimensional data points z by first reconstructing the 8 by 8 image patches,
applying the transformation, and finally removing the bottom-right pixel again. This can be formal-
ized as

Tz = CPσRx =

 0

I
...
0

 (δσ(i)j)ij

(
I

−1 · · · −1

)
z, (9)

where σ is a permutation representing rotation or flipping, Pσ is its corresponding permutation
matrix, I is a 63× 63 identity matrix, and C and R are 63× 64 and 64× 63 dimensional matrices,
respectively.

1

As we will show, transformations of this type are volume preserving, that is, their determinant is 1
and the Jacobian can be ignored when evaluating p(Tz)|detT|. We have

Tij = Rσ(i)j =

1 if σ(i) = j

−1 if σ(i) = 64

0 else.
∀i, j ∈ {1, ..., 63}. (10)

Using Leibniz formula for determinants,

|detT| =

∣∣∣∣∣ ∑
π∈S63

(
sgn(π)

63∏
i=1

Tiπ(i)

)∣∣∣∣∣ , (11)

where S63 is the set of all permutations over {1, ..., 63}. Let σ(k) = 64 for some k. Then for all
i 6= k we have Tiπ(i) = 0 unless π(i) = σ(i). Since this constraints at least 62 and therefore all
values of the permutation π, it implies that there is only one permutation π′ ∈ S63 with a nonzero
term in the above expansion. Hence,

|detT| =

∣∣∣∣∣sgn(π′)
63∏
i=1

Tiπ′(i)

∣∣∣∣∣ = 1. (12)

2.2 Log-likelihood rates

Let x be a vector representation of an 8 by 8 image patch sampled from the BSDS300 dataset before
subtraction of the pixel mean. We can think of the removal of the DC component also as a basis
transformation,

z = Ax =

1− τ −τ −τ · · · −τ
−τ 1− τ −τ · · · −τ

...
...

−τ −τ · · · 1− τ −τ
τ τ · · · τ τ

x, (13)

where τ = 1/64. Instead of a normalized bottom-right pixel, z64 here represents the missing DC
component of the image patch. Image patch models are commonly trained on the first 63 dimensions,
z1:63. To compute a log-likelihood rate, we extend these models by separately modeling the DC
component:

p(x) = q(z1:63)q(z64)|detA|. (14)
Using a histogram with 60 bins we get an average log-likelihood of 0.5020 [nat] for the DC compo-
nent. The log-Jacobian is -4.1589 [nat], so that the formula

(E [ln q(z1:63)] + 0.5020− 4.1589)/64/ ln(2) (15)
can be used to transform average log-likelihoods in nats into log-likelihood rates in bits per pixel.

3 Dequantizing van Hateren’s dataset

Images of van Hateren and van der Schaaf’s dataset are stored using a 16 bit integer representing a
linearized grayscale intensity for each pixel [8]. After removing overly blurry images and images
containing pixel artefacts, the dataset contains 3632 images of 1024 by 1536 pixels with linearized
intensities. We used 3000 images for training and evaluation, and the remaining images for testing.
Despite adding uniform noise to account for integer discretization, RIDE discovered quantization
artefacts in the data undetected by the other models. This led to unnaturally high likelihoods (on
both the training and the test set). To avoid uninteresting solutions, we therefore dequantized images
on an individual basis as follows.

For each image, we computed a list of unique pixel values occurring in the image and ordered them,
v1 < v2 < · · · < vM . If xij = vm and m < M , we replaced the pixel with

x′ij = vm + (vm+1 − vm)uij , (16)
where uij is random noise uniformly distributed between 0 and 1 independently drawn for each
pixel. If m = M , we used x′ij = vM + (vM − vM−1)uij . After dequantization, images were
log-transformed, x′′ij = log x′ij , as is common, and no further preprocessing was applied.

2

4 Samples

Although empirical evidence and theoretical arguments suggest that samples are generally not a
good surrogate for generative performance [4, 6, 7], for completeness we here include samples
produced by our models.

Images were sampled by initializing boundaries with random white noise and sampling pixels row
by row from left to right. We first sampled a slightly larger image and then cropped the pixels at the
boundaries to produce a 256 by 256 pixel image. Sampling large images was sometimes unstable,
especially for RIDE with multiple layers and when training did not converge. This problem could
typically be solved by constraining the conditionally sampled pixel values to a finite range.

Figure 1 shows samples of models trained on BSDS300. RIDE samples look similar to MCGSM
samples, but appear to contain stronger long-range correlations. For comparison, we also included
samples generated by state-of-the-art Markov random fields (MRFs) [1, 2]. In contrast to our mod-
els, the likelihoods of these MRFs is intractable and samples were generated using Markov chain
Monte Carlo methods.

Additionally, we also include samples of a model trained on RGB images. RGB pixels were first
basis-transformed to separate luminance from color. One two-layer RIDE model was trained on
the luminance channel while a second model was trained on the color channels conditioned on the
luminance channel. Samples were generated by first sampling the luminance channel, then the two
color channels, and then mapping pixels back into RGB space.

Samples for models trained on the dataset of van Hateren and van der Schaaf [8] are shown in
Figure 2. In contrast to BSDS300, samples of RIDE here look much more natural and structured
than samples generated by an MCGSM.

Despite large improvements in average log-likelihood, samples drawn from RIDE trained on dead
leaf images appear visually very similar to samples generated by an MCGSM (Figure 3). Only on
closer inspection do RIDE samples appear to contain more disk like objects. For comparison, we
also include samples generated by a diffusion model [3].

Figure 1: Samples generated by various models trained on BSDS300. Top row, from left to right:
MCGSM, RIDE with 1 SLSTM layer, RIDE with 2 SLSTM layers, gated MRF1 (mPoT-TConv)
[2], and MRF1 [1]. Bottom row: Additional samples generated by two-layer RIDEs trained on RGB
images.

1Samples were generated by and included with permission from authors of the respective papers.

3

Figure 2: Two samples generated by an MCGSM (left) and two samples generated by a two-layer
RIDE (right) trained on van Hateren’s dataset [8].

Figure 3: A dead leaf image produced by superimposing disks (left), a sample generated by an
MCGSM (center-left), a sample generated by a three-layer RIDE (center-right), and a sample gener-
ated by a deep multiscale diffusion model1 [3] (right). Despite the drastic improvement in likelihood,
samples of RIDE appear superficially similar to samples drawn from an MCGSM. The diffusion
model is able to produce much larger flat regions, but our results suggest suggest that this is not
crucial for good performance in terms of average log-likelihood.

References
[1] Q. Gao and S. Roth. How well do filter-based MRFs model natural images? In Proceedings of the 34th

DAGM Symposium, 2012.

[2] M. Ranzato, V. Mnih, and G. E. Hinton. Generating more realistic images using gated MRFs. In Advances
in Neural Information Processing Systems 23, 2010.

[3] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In ICML 32, 2015.

[4] L. Theis, S. Gerwinn, F. Sinz, and M. Bethge. In all likelihood, deep belief is not enough. JMLR, 2011.

[5] L. Theis, R. Hosseini, and M. Bethge. Mixtures of conditional Gaussian scale mixtures applied to multi-
scale image representations. PLoS ONE, 7(7), 2012.

[6] B. Uria, I. Murray, and H. Larochelle. RNADE: the real-valued neural autoregressive density-estimator.
In Advances in Neural Information Processing Systems 26, 2013.

[7] A. van den Oord and J. Dembre. Locally-connected transformations for deep GMMs, 2015. Deep Learning
Workshop, ICML.

[8] J. H. van Hateren and A. van der Schaaf. Independent component filters of natural images compared with
simple cells in primary visual cortex. Proc. of the Royal Society B: Biological Sciences, 265(1394), 1998.

4

