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Abstract

We present a probabilistic model for natural images that is based on mixtures of Gaussian scale mixtures and a simple
multiscale representation. We show that it is able to generate images with interesting higher-order correlations when
trained on natural images or samples from an occlusion-based model. More importantly, our multiscale model allows for a
principled evaluation. While it is easy to generate visually appealing images, we demonstrate that our model also yields the
best performance reported to date when evaluated with respect to the cross-entropy rate, a measure tightly linked to the
average log-likelihood. The ability to quantitatively evaluate our model differentiates it from other multiscale models, for
which evaluation of these kinds of measures is usually intractable.
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Introduction

Probabilistic models of natural images are used in many fields

related to vision. In computational neuroscience, they are used as

a means to understand the structure of the input to which

biological vision systems have adapted and as a basis for normative

theories of how those inputs are optimally processed [1,2]. In

computer science, they are used as priors in applications such as

image denoising [3], compression [4], or reconstruction [5], and to

learn image representations that can be used in object recognition

tasks [6]. The more abstract goal common to these efforts is to

capture the statistics of natural images.

The dominant approach to modeling whole images has been to

use undirected graphical models (or Markov random fields). This is

despite the fact that directed models possess many advantages over

undirected models [5,7]. In particular, sampling as well as exact

maximum likelihood learning can often be performed efficiently in

directed models while presenting a major challenge with most

undirected models. Another problem faced by undirected models

is the question of how to evaluate them. Ideally, we would like to

quantify the amount of second- and higher-order correlations

captured by a model. For stochastic processes, this can be done by

calculating the cross-entropy rate between the learned distribution

and the true distribution. However, the cross-entropy rate is

typically difficult to estimate in undirected models so that these

models are often evaluated only with respect to simple statistics

computed from model samples or simply based on the samples’

visual appearance. These measures, however, are less objective

and hence need to be used with great caution. A large lookup table

storing examples from the training set, for example, will reproduce

samples which are indistinguishable from true image samples. Yet

this model effectively assigns zero probability to images that have

not been stored in the lookup table and would perform miserably if

evaluated based on the cross-entropy rate. Evaluation of the cross-

entropy rate is therefore crucial for the comparison of natural

image models and an important step in measuring the progress

which has been made in capturing the statistics of natural images.

Following the directed approach, we will demonstrate here that

a directed model applied to multi-scale representations of natural

images is able to learn and reproduce interesting higher-order

correlations. We use multiscale representations to separate the

coarser components of an image from its details, thereby

facilitating the modeling of both very global and very local image

structure. The particular choice of our representation makes it

possible to still evaluate the cross-entropy rate.

Methods

One way to model the statistics of arbitrarily large images is to

use a directed model in which the parents of a node are

constrained to pixels which are left or above of it (as in Figure 1). A

set of parents fulfilling this constraint is also called a causal

neighborhood [7]. Note that a pixel will still depend on neighbors in

all directions, that is, the causal neighborhood assumption puts

only mild constraints on the size or shape of a pixel’s Markov

blanket. An advantage of the directed model is that it allows us to

easily decompose the distribution defined over images or, more

generally, a two-dimensional stochastic process X indexed by i

and j, into a product of conditional distributions:

P(X )~P
i,j

P(Xi,j DPai,j), ð1Þ
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where Pai,j refers to the causal neighborhood of pixel Xi,j .

Consequently, performing maximum likelihood learning by

maximizing the log-likelihood of the model can be done by

optimizing a set of conditional probability distributions. An image

is sampled from the model by shifting the causal neighborhood

from top to bottom and from left to right, filling an image row by

row. This procedure requires that the top rows and left columns of

the image are initialized somehow to provide input to the

conditional distributions. As a consequence, only after the

procedure has generated a few rows and converged to the

distribution of the model will it generate the desired samples.

Mixture of conditional Gaussian scale mixtures
To complete the model, the conditional distribution of each

pixel given its causal neighborhood has to be specified. We will

assume stationarity (or shift-invariance), so that this task reduces to

the specification of a single conditional distribution. A family of

distributions which has repeatedly been shown to contain suitable

building blocks for modeling the statistics of natural images is

given by Gaussian scale mixtures (GSMs) [8,9],

p(x)~

ð
Q(z)N (x; m,zC)dz, ð2Þ

where N (x; m,zC) is a multivariate Gaussian density with mean m
and covariance zC, and Q(z) is any univariate density over scales z.

Mixture models and Markov random fields based on GSMs have

been successfully applied to denoising tasks [3,10]. When used in

the directed setting also employed here, GSMs have been shown

to yield highly improved estimates of the multi-information rate of

natural images [7].

Here we use the conditional distribution of a mixture of GSMs to

model the distribution of a pixel given its causal neighborhood. We

restrict ourselves to mixtures of finite GSMs, that is, GSMs with a

finite number of scales, and to mixtures in which each component

and scale has equal a priori weight. Additionally, we assume that

each GSM has mean zero. If variables x and y are modeled jointly

with a mixture of GSMs, the conditional distribution of y given x
can be written as

p(yDx)~
X
c,s

p(c,sDx)|fflfflffl{zfflfflffl}
gate

p(yDx,c,s)|fflfflfflfflffl{zfflfflfflfflffl}
expert

, ð3Þ

where c,s run over mixture components and scales, respectively.

From the formulation in Equation 3 it is clear that the conditional

distribution falls into the mixtures of experts framework [11]. In this

framework, the predictions of multiple predictors – the experts – are

mixed according to weights which are computed locally by the

gates. For mixtures of GSMs, we have

p(c,sDx)!DlcsKcD
1
2 exp {

1

2
xT lcsKcx

� �
, ð4Þ

p(yDx,c,s)! exp {
1

2
(y{Acx)T lcsMc(y{Acx)

� �
, (5)

where Mc and Kc are positive definite matrices and the scales lcs

are positive real parameters. The gates provide a weighting of the

different experts based on the covariance structure and scale of the

input variables x. Each expert is a Gaussian with a certain

covariance and a mean linearly predicted by the matrix Ac. The

conditional distribution can equivalently be described as a mixture

of conditional Gaussian scale mixtures (MCGSM), because

conditioned on c, the conditional distribution becomes a

conditional GSM [7].

A simple multiscale representation
To facilitate the modeling of global as well as local structure, we

introduce a multiscale representation which allows us to generate

images by first sampling a low resolution image at the coarsest

level and then iteratively adding more and more levels of

increasingly finer scale. For simplicity, we will use the Haar

wavelet representation. Before explaining the generative model

which proceeds from coarse to fine, we recapitulate how the Haar

wavelet coefficients can be obtained for a given image by

transforming it iteratively proceeding from finer to coarser levels.

For each iteration, the transformation is obtained as follows: The

pixels of an image are first grouped into 2|2 pixel blocks. Each

block is then transformed using the orthogonal Haar wavelet basis

(Figure 2). One component of the Haar basis, also called the DC

component, essentially performs a block-average. The other three

AC components encode the remaining details of the image. In this

way one obtains four smaller images which together contain the

full information about the original image. Subsequently, the same

procedure can always be applied to the low resolution image

again.

Since the four images obtained from each iteration of the

wavelet transform all share the same topology, one can also view

them as an image with multiple channels just like there are three

different color channels at each pixel location for color images. We

refer to a group of four coefficients at one location in the new

representation as a superpixel. Similarly to the generative model

defined in Equation 1 and illustrated in Figure 1, we could model

images in this new representation with an MCGSM which tries to

predict all channels of a superpixel at once, given a causal

neighborhood of superpixels.

The essential difference when building a multiscale generative

model that iteratively proceeds from coarse to fine is to assume at

Figure 1. Directed image modeling. (A) A conditional model with a twenty-four pixel causal neighborhood. Sampling is performed by shifting
the causal neighborhood from left to right and from top to bottom. (B) A graphical model representation with only four pixels in the causal
neighborhood. The parents of a pixel are constrained to pixels which are above of it or in the same row and left of it.
doi:10.1371/journal.pone.0039857.g001

ð5Þ
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each level that the DC channel has already been specified by the

previous iterations and only the remaining three AC channels

need to be predicted. Importantly, this implies that the restriction

to a causal neighborhood only persists for the AC channels but

does not apply to the DC channel anymore. In other words, we

can now base our predictions on an arbitrary set of pixels from the

low-resolution image (that is, the DC channel) which is not

confined to a causal neighborhood. If w(X 0)~(Y 1,X 1) is the

superpixel representation of an image X 0 with a low-resolution

(DC) part X 1 and a high-resolution (AC) part Y 1, we have

P(X 0)~P(Y 1,X 1)~P(Y 1DX 1)P(X 1): ð6Þ

The same decomposition can be applied again to P(X 1), then

again to P(X 2), and so on. That is, we will model images in this

representation using the following factorization:

P(X 0)~P(X M ) P
M

m~1
P(Y mDX m): ð7Þ

Figure 2. A multiscale image representation. Starting with a regular gray-scale image, the pixels are grouped into two by two pixels. Each group
is then transformed using the Haar wavelet basis on the right. The resulting basis coefficients can be interpreted as channels of an image of which
one channel represents the low-pass information and the other channels represent high-pass information. Just as in the original representation, we
can define a directed model and causal neighborhoods for the superpixel representation. If the low-resolution image is given, the prediction of a
pixel can be based on information from anywhere in the low-resolution image (not just a causal neighborhood) without losing the ability to
efficiently sample or optimize the parameters of the model.
doi:10.1371/journal.pone.0039857.g002

Figure 3. Samples from model trained on natural images. (A) To visualize the contribution of the different MCGSMs at the different scales, the
first column shows samples from the MCGSM at the largest scale (low resolution). This sample was obtained using the top layer single-scale MCGSM.
The second column shows samples from the full model, conditionally sampled with respect to the sample on the left. These samples therefore also
contain the high-resolution information. The image on the left can be recovered from the image on the right through block-averaging. (B) The third
column shows the same samples with all higher-order correlations destroyed but the autorocorrelation function left intact. This shows that the
characteristic features of our samples are due to learned higher-order correlations and that the second-order correlations of natural images are
faithfully reproduced as well. (C) For comparison, the right most column shows examples of images from the training set [14].
doi:10.1371/journal.pone.0039857.g003
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Due to this factorization, we can sample an image by first

sampling a low-resolution image X 1 and then conditionally

sampling Y 1. Each factor on the right-hand side again factors

into a product of the form of Equation 1,

P(X M )~P
i,j

P(X M
i,j DPaM

i,j ), ð8Þ

P(Y mDX m)~P
i,j

P(Y m
i,j DPam

i,j ,X
m): ð9Þ

Every variable that has already been sampled can be used to

conditionally sample all other variables. In this way, we obtain a

complete set of Haar wavelet coefficients. To reconstruct an image

from the Haar wavelet coefficients, we start with the low-resolution

image at the coarsest scale, X M , and merge it with the AC

coefficients at the next level, Y M , to give a higher-resolution image

X M{1~w{1(X M ,Y M ). We repeat this process until we obtain the

image at the original resolution, X 0.

In the following, we will model the distributions P(X M
i,j DPaM

i,j )
and P(Y m

i,j DPam
i,j ,X

m) using MCGSMs (Equations 3 to 5). We will

use a different density for each scale m, but the same density for all

locations i,j within one scale. Maximum likelihood learning in this

case amounts to learning to predict Y m
i,j from Pam

i,j and X m, and

X M
i,j from PaM

i,j by maximizing the average log-likelihood of each

conditional density. Maximizing the likelihood of the transformed

image is equivalent to maximizing the likelihood of the original

image because our Haar transform is just an orthogonal

transformation. Otherwise we would have to take into account

the transform’s Jacobian determinant.

Figure 4. Samples from model trained on dead leave images. (C) The model was trained on samples from an occlusion-based model [17].
Example images from the training set are given on the right. (A) As above, the first two columns show samples from our model at two different scales.
(B) The third column shows the same samples with all higher-order correlations destroyed, revealing second-order statistics which are very similar to
the ones learned from natural images.
doi:10.1371/journal.pone.0039857.g004

Figure 5. Multi-information and cross-entropy rates. (A) The estimated multi-information rate decreases steadily as the scale increases (the
resolution decreases). (B) The conditional cross-entropy rate increases with scale. The factor am corrects for the change in variance due to block-
averaging and can be different for each scale m. This shows that the van Hateren dataset [14] is generally not scale-invariant. A very similar behavior is
shown by images created with an occlusion based model [17].
doi:10.1371/journal.pone.0039857.g005
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Model evaluation
A principled way to evaluate a model approximating a

stochastic process X is to use the model for estimating the true

distribution’s multi-information rate (MIR) [7,12],

I?½X �~ lim
N??

1

N

XN

n~1

H½Xn�{H½X1,:::,XN �
 !

, ð10Þ

where H denotes the (differential) entropy. A related measure is

the entropy rate [13].

H?½X �~ lim
N??

1

N
H½X1,:::,XN �: ð11Þ

For a strictly stationary Markov process, one can show that these

quantities reduce to [7,13]

H?½X �~H½XN DPaN �, ð12Þ

I?½X �~H½X1�{H½XN DPaN �, ð13Þ

for some N. The cross-entropy between a target distribution and

any approximating model distribution with density p is defined

here as E½{ log p(X )�, where the expectation is with respect to the

target distribution. Analogous to the entropy rate (Equation 11),

we can define the cross-entropy rate as a limit of cross-entropies. It is

readily shown that the cross-entropy rate is equal to

E½{ log p(XN DPaN )�, where p is now a model density approx-

imating the distribution of XN given PaN . By replacing the

entropy rate with the cross-entropy rate in Equation 13 (second

term), we obtain a lower bound on the true MIR. In the following,

we will call this lower bound the cross-MIR.

If the assumption of stationarity or the Markov assumption is

not met by the true distribution, the cross-MIR will still be a lower

bound but will become less tight [7]. The difference between the

true MIR and the cross-MIR is the Kullback-Leibler divergence

between the true distribution and the model distribution. There-

Table 1. Multi-information rate estimates.

model I?+SEM[bit/pixel]

MCGSM+multiscale 3.4464E-3

MCGSM 3.4064E-3

CGSM 3.2665E-3

MCG 3.2564E-3

CG (Gaussian) 2.7067E-3

Multi-information rate (MIR) estimates of natural images obtained with different
models including the conditional Gaussian scale mixture (CGSM) with a 7x7
causal neighborhood [7] and a mixture of conditional Gaussians (MCG) with a
5x5 causal neighborhood [5]. The SEM corresponds to one standard deviation
of the estimate for different test sets. Since each model gives us a lower bound
on the true MIR, a larger value corresponds to a better model.
doi:10.1371/journal.pone.0039857.t001

Figure 6. Natural image samples from different models. From left to right: Samples from a mixture of conditional Gaussians [5] (565
neighborhoods, 5 components including means), a conditional Gaussian scale mixture [7] (767 neighborhoods, 7 scales), a mixture of conditional
Gaussian scale mixtures and the multiscale model. The appearance of the samples changes substantially from model to model.
doi:10.1371/journal.pone.0039857.g006

Figure 7. Pairwise filter statistics. The joint histogram of pairs of
Gaussian derivative filter responses changes as their spatial separation
increases. Lp-spherically symmetric distributions were fitted to the filter
responses for natural and synthetic data. The vertical axis shows a
maximum likelihood estimate of the parameter p. The horizontal axis
shows the vertical offset between the position of the two filters. The
plot shows that the multiscale representation enables our model to
match the statistics of pairwise filter responses over much longer
distances, which could be one possible explanation for the better
performance in terms of the cross-entropy rate.
doi:10.1371/journal.pone.0039857.g007
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fore, the better the approximation of the model distribution to the

true distribution, the larger the cross-MIR.

Maximizing the cross-MIR by minimizing the cross-entropy

rate is the same as maximizing the average log-likelihood of the

conditional distributions. The MIR quantifies the amount of

second- and higher-order correlations of a stochastic process.

Similar to the likelihood, the cross-MIR can be said to quantify the

amount of correlations captured by a model. In addition, it has the

advantage of being easier to interpret than the likelihood or the

cross-entropy rate, as it is always non-negative and invariant under

multiplication of the data with a constant factor. An independent

white noise process has a MIR of zero. In the stationary case,

evaluating the cross-MIR amounts to calculating one marginal

entropy and one conditional cross-entropy (Equation 13).

Since the superpixel representation is just a linear transforma-

tion of the original image, we can evaluate the entropy rate also for

the multiscale model. Using the fact that the transformation has a

Jacobian determinant of 1, the following relationship holds for

both entropy and cross-entropy rates:

H?½X 0�~ 1

4
H?½Y 1DX 1�z 1

4
H?½X 1� ð14Þ

~
XM
m~1

1

4m
H?½Y 1DX 1�z 1

4M
H?½X M �: ð15Þ

The factor
1

4
is due to the superpixel representation having four

channels. In order to estimate the cross-entropy rate of our model,

we only need to compute the cross-entropy rates at the different

scales and form a weighted average.

Results

Natural images
We extracted training data at four different scales from log-

transformed images taken from the van Hateren image dataset

[14]. In all experiments, we used 200000 training examples of

inputs and outputs.

To model the coarsest scale, we used an MCGSM with a causal

neighborhood corresponding to the upper half of a 7|7
neighborhood surrounding the predicted pixel (as in Figure 1).

For the finer scales, we trained three MCGSMs with 3|3
superpixel neighborhoods (as in Figure 2; using the full neighbor-

hood and not only the upper half). All models were comprised of 8

components with 4 scales each. We found that first-order

optimization methods performed poorly compared to second-

order optimization methods in tuning the model’s parameters. For

second-order optimization, we used the quasi-newton method

BFGS [15] (gradients of the parameters are provided in Appendix

S1). The small patch sizes were chosen mainly for computational

reasons. Note that the number of parameters grows as O(n4) for

n|n neighborhoods (because of the gating covariance matrices,

Equation). Since the time and space complexity of BFGS grows

quadratically with the number of parameters, or as O(n8), using

larger patches was computationally prohibitive. For faster

convergence, we initialized the conditional models with para-

meters from mixtures of GSMs trained on the joint distribution of

inputs and outputs using expectation maximization [16].

To sample from the model, we first generated an image using

the single-scale MCGSM at the coarsest scale. We initialized the

boundaries of the image sample with small Gaussian white noise

and then sampled images by sequentially sampling each pixel from

left to right and top to bottom. The images were large enough to

allow the sampling procedure to converge to the model’s

stationary distribution. After sampling a large image, we extracted

its center part and used it as input to the model at the next finer

scale. The sampling procedure converged quickly and the choice

of initialization was therefore noncrucial. Using true natural

images for initializing the boundaries yielded similar results.

Samples from the model are shown in Figure 3A. We find that

the model is able to generate images with some interesting

properties that cannot be found in samples of other models of

natural images. Perhaps the most striking property of the sampled

images is the heterogeneity expressed in the combination of flat

image regions with regions of high variance as it can also be

observed in true natural images.

By destroying the higher-order correlations in the samples while

keeping the second-order correlations intact, we obtain the

familiar pink noise images (Figure 3B). This shows that the model

faithfully reproduces the autocorrelation function of natural

images, and that the characteristic features of the sampled images

are due to higher-order correlations learned by the model. The

higher-order correlations were removed by replacing the phase

spectrum of the image with a random phase spectrum obtained

from a white noise image but keeping the sample’s amplitude

spectrum. For stationary processes, the amplitude spectrum

defines the autocorrelation function of an image and vice versa.

Dead leave images
As a further test, we generated a more controlled dataset with

1000 images of size 256|256 pixels sampled from an occlusion

model (‘‘dead leaves’’) using the procedure described by Lee and

Mumford in [17]. Afterwards, we added small Gaussian white

noise to the samples as without the noise, the multi-information

rate would be infinite. The dead leave model was designed to

generate samples which are approximately scale invariant and

share many properties with natural images. In particular, dead

leave images share very similar marginal and second-order

statistics with natural images. Many of the difficult-to-capture

higher-order correlations found in natural images are also believed

to be caused by occlusions in the image. This dataset should

therefore pose similar challenges as the set of natural images. We

extracted training data at three different scales and used the same

neighborhood sizes and the same training procedure as above.

Samples generated by our model are shown in Figure 4A. Clearly,

our model has not learned what a circle is. However, it is able to

reproduce the blotchiness of the original samples despite having no

built-in knowledge of occlusions.

Scale invariance
The multiscale representation lends itself to an investigation of

the scale invariance property of natural images. The statistics of a

scale-invariant process are invariant under block-averaging and

appropriate rescaling to compensate for the loss in variance [18].

Using the notation as above, this would mean that X 0 is

distributed as aX 1 for some a. This in turn implies that the

multi-information rate (MIR) should stay constant as a function of

the scale. Because the MIR is invariant under rescaling with a

constant factor, we can ignore the rescaling factor a.

We estimated the multi-information rate of the van Hateren

dataset with the cross-MIR of our model (Figure 5). The cross-

entropy rates were calculated as in Equation 15.

Scale-invariance of natural images is typically tested by looking

at simple statistics such as the distribution of certain filter

responses. While these statistics can be surprisingly stable across

Mixtures of Conditional Gaussian Scale Mixtures
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scales, the steady decrease of the information rate suggests that the

van Hateren natural image dataset is not very scale-invariant. For

example, a consequence of a smaller MIR at larger scales is that

pixels become more difficult to predict from neighboring pixels.

However, the difference in cross-MIR could also be caused by the

fact that we are using a slightly different model at the largest scale

than for modeling the image details at the lower scales. This

problem is not shared by the conditional entropy rates plotted on

the right of Figure 5, because each conditional entropy depends

only on a single model. If the images were indeed scale invariant,

the distribution over Y m and X m should not change with scale m,

subject to proper rescaling. Since we are using the same model (but

with separately learned parameters) to model the relationship

between X m and Y m for all m, the estimated entropy rates should

stay constant even if our model performed poorly. Our results are

consistent with the findings of Wu et al., who showed that many

natural images are more difficult to compress at larger scales and

argued that the entropy rate of natural images has to increase with

scale [19]. We find a similar drop in MIR for dead leave images.

Since these images were designed to be as scale-invariant as

possible, this shows that our model and the MIR are very sensitive

to these differences in statistics.

Multi-information rates
Using an estimate of the marginal entropy of 1:57 bits [7], we

arrive at an estimated multi-information rate of 3:44 bits per pixel

for the van Hateren dataset (Table 1). This is approximately 0:18
bits better than the current best estimate for natural images [7]

and 0:04 bits better than our result obtained without using the

multiscale representation. Note that even for a small image of

100|100 pixels, differences of 0.04 and 0.18 bit per pixel give rise

to absolute differences of 400 and 1800 bits, respectively.

Since the true MIR of natural images is unknown, this increase

in performance does not tell us how much closer we got to

capturing all correlations of natural images. It also does not reveal

in which way the model has improved compared to other models.

However, samples and statistical tests can give us an indication.

Figure 6 shows samples drawn from models suggested by Domke

et al. [5], Hosseini et al. [7], and samples from the models

presented in this paper. The substantial change in the appearance

of the samples suggests that the increase from 3.40 bits to 3.44 bits

reflects a meaningful improvement.

Another way to demonstrate an improvement is to investigate

sample-based test statistics. The joint statistics of the responses of

two edge filters applied at different locations in an image are

known to change in certain ways as a function of their spatial

separation and are difficult to reproduce [20]. We apply a

vertically oriented Gaussian derivative filter at two vertically offset

locations and record their responses (for a more detailed

explanation, see Appendix S2). After whitening, the filter

responses are approximately Lp-spherically symmetric. We there-

fore fit an Lp-spherically symmetric model [21] with a radial

Gamma distribution to the responses and, at every distance,

record the parameter p of the model’s norm. Since the marginal

distribution of each filter response is highly kurtotic and the

responses become more independent as the filter distance

increases, the joint histogram becomes more and more star

shaped. This is expressed in the optimal value for p becoming

smaller and smaller. As plotted in Figure 7, the behavior of the

optimal p is not well reproduced using a single scale but is

captured by our multiscale model.

Discussion

We have shown how to use directed models in combination with

multiscale representations in a way which allows us to still evaluate

the model in a principled manner. To our knowledge, this is the

only multiscale model for which the likelihood can be evaluated.

Despite the model’s computational tractability, it is able to learn

interesting higher-order correlations from natural images and

yields state-of-the-art performance when evaluated in terms of the

multi-information rate. In contrast to the directed model applied

to images at a single scale, the model also reproduces the pairwise

statistics of filter responses over long distances. Here, we only used

a simple multiscale representation. Using more sophisticated

representations might lead to even better models. For reasons

explained above, the neighborhood sizes used by our models were

still fairly small. This is a problem which could be solved in future

implementations using different parametrizations or optimization

methods.

Code for training and evaluating MCGSMs on multiscale

image representations can be found at http://bethgelab.org/

code/theis2012/.

Supporting Information

Appendix S1 Details on the parametrization and gra-
dients of the conditional log-likelihood (Equation 3).

(PDF)

Appendix S2 A more detailed explanation of how to
generate Figure 7.

(PDF)
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