
Journal of Machine Learning Research 12 (2011) 3071-3096 Submitted 10/10; Revised 7/11; Published 11/11

In All Likelihood, Deep Belief Is Not Enough

Lucas Theis LUCAS.THEIS@TUEBINGEN.MPG.DE

Sebastian Gerwinn SEBASTIAN.GERWINN@TUEBINGEN.MPG.DE

Fabian Sinz FABIAN .SINZ@TUEBINGEN.MPG.DE

Matthias Bethge MATTHIAS .BETHGE@TUEBINGEN.MPG.DE

Werner Reichardt Centre for Integrative Neuroscience
Bernstein Center for Computational Neuroscience
Max Planck Institute for Biological Cybernetics
Spemannstraße 41, 72076 Tübingen, Germany

Editor: Yoshua Bengio

Abstract
Statistical models of natural images provide an important tool for researchers in the fields of ma-
chine learning and computational neuroscience. The canonical measure to quantitatively assess
and compare the performance of statistical models is given by the likelihood. One class of statis-
tical models which has recently gained increasing popularity and has been applied to a variety of
complex data is formed by deep belief networks. Analyses of these models, however, have often
been limited to qualitative analyses based on samples due tothe computationally intractable nature
of their likelihood. Motivated by these circumstances, thepresent article introduces a consistent
estimator for the likelihood of deep belief networks which is computationally tractable and simple
to apply in practice. Using this estimator, we quantitatively investigate a deep belief network for
natural image patches and compare its performance to the performance of other models for natural
image patches. We find that the deep belief network is outperformed with respect to the likelihood
even by very simple mixture models.

Keywords: deep belief network, restricted Boltzmann machine, likelihood estimation, natural
image statistics, potential log-likelihood

1. Introduction

When dealing with natural images, the choice of image representation is often crucial for achieving
a good performance. Good generative models or classifiers, for example, can be easier to realize
in terms of more complex features such as edges than in terms of raw pixel intensities. Several
facts point to the advantage of using hierarchical representations for encoding natural images over
non-hierarchical ones. Multiple layers of representations allow for the use of simpler transforma-
tions, each solving only a subproblem, as well as for a more efficient implementation by enabling
the reuse of low-level features in the realization of higher-level features. Further motivation for
hierarchical representations comes from the hierarchical organizationof the brain (Felleman and
van Essen, 1991) and the hierarchical organization of the concepts surrounding us. The idea of
using hierarchical image representations in supervised as well as unsupervised tasks is now several
decades old (e.g., Selfridge, 1958; Fukushima, 1980; LeCun et al., 1989). However, only the emer-
gence of recent training methods has made them competitive across many supervised learning tasks
and led to a renewed surge of interest in hierarchical image representations. Despite this success

c©2011 Lucas Theis, Sebastian Gerwinn, Fabian Sinz and Matthias Bethge.

THEIS, GERWINN, SINZ AND BETHGE

in supervised tasks, no probabilistic model has been conclusively shownto exhibit state-of-the-art
performance as agenerativemodel and at the same time benefit strongly from hierarchical image
representations.

The most prominent example of the recent research in hierarchical image modeling is the re-
search into a class of hierarchical generative models calleddeep belief networks. Deep belief net-
works were introduced by Hinton and Salakhutdinov (2006); Hinton et al.(2006) together with a
greedy learning rule as an approach to the long-standing challenge of training deepneural networks,
that is, hierarchical neural networks such as multi-layer perceptrons.The existence of an efficient
learning rule has made them become attractive not only for pretraining multi-layer perceptrons, but
also for density estimation and other inherently unsupervised learning tasks. In supervised tasks,
they have been shown to learn representations which outperform many competing representations
when employed, for example, in character recognition (Hinton et al., 2006)or speech recognition
(Mohamed et al., 2009). In unsupervised tasks, they have been appliedto a wide variety of com-
plex data sets such as patches of natural images (Osindero and Hinton, 2008; Ranzato et al., 2010a;
Ranzato and Hinton, 2010; Lee and Ng, 2007), motion capture recordings (Taylor et al., 2007) and
images of faces (Susskind et al., 2008). When applied to natural images, deep belief networks have
been shown to develop biologically plausible features (Lee and Ng, 2007)and samples from the
model were shown to adhere to certain statistical regularities also found in natural images (Osin-
dero and Hinton, 2008). Examples of natural image patches and featureslearned by a deep belief
network are presented in Figure 1.

An important measure to assess the generative performance of a probabilistic model is the like-
lihood. The likelihood allows us to objectively compare the density estimation performance of
different models. Given two model instances with equal a priori probability, the ratio of their likeli-
hoods with respect to a set of data samples tells us everything we need to know to decide which of
the two models is more likely to have generated the data set. Further motivation for the likelihood
stems from coding theory. For densitiesp andq, the negative expected log-likelihood represents the
cross-entropyterm of the Kullback-Leibler (KL) divergence,

DKL [p(x)||q(x)] =−∑
x

p(x) logq(x)−H[p(x)],

which is always non-negative and zero if and only ifp and q are identical. The cross-entropy
represents the coding cost of encoding samples drawn fromp with a code that would be optimal for
samples drawn fromq. Correspondingly, the KL-divergence represents the additional coding cost
created by using an optimal code which assumes the distribution of the samples tobeq instead of
p.

The expected negative log-likelihood, or cross-entropy, quantifies theamount of correlations
captured by a statistical model. A model with a minimal cross-entropy would, at least in principle,
be able to predict missing information from partially observed input in an optimalmanner. In this
sense, the likelihood can be understood as a measure of scene understanding if a model is applied
to natural scenes.

Finally, the likelihood allows us to directly examine the success of training when maximum
likelihood learning is employed. Even when the ultimate goal is classification, deep belief networks
and related unsupervised feature learning approaches are optimized withrespect to the likelihood.
Evaluating the likelihood is therefore also important to assess the success ofpretraining and for
fine-tuning hyperparameters. Unfortunately, the likelihood of deep beliefnetworks is in general
computationally intractable to evaluate.

3072

IN ALL L IKELIHOOD , DEEPBELIEF IS NOT ENOUGH

Figure 1: Left: Natural image patches sampled from the van Hateren dataset (van Haterenand
van der Schaaf, 1998).Right: Filters learned by a deep belief network trained on whitened
image patches.

In this article, we set out to test the performance of a deep belief network by evaluating its
likelihood. After reviewing the relevant aspects of deep belief networks,we will derive a new
consistent estimator for their likelihood and demonstrate the estimator’s applicability in practice.
We will investigate a particular deep belief network’s capability to model the statistical regularities
found in natural image patches. We will show that the deep belief network under study is not
particularly good at capturing the statistics of natural image patches as it is outperformed with
respect to the likelihood even by very simple mixture models. We will furthermoreshow that adding
layers to the network has only a small effect on the overall performance of the model if the first layer
is trained well enough and offer possible explanations for this observation by analyzing a best-case
scenario of the greedy learning procedure commonly used for training deep belief networks.

2. Models

In this section we will review the statistical models used in the remainder of this article and discuss
some of their properties relevant for estimating the likelihood of deep belief networks (DBNs).
Throughout this section, the goal of applying statistical models is assumed to be the approximation
of a particular distribution of interest, thedata distribution. We will denote this distribution by ˜p.

2.1 Boltzmann Machines

A Boltzmann machineis a potentially fully connectedundirected graphical modelwith binary
random variables. Its probability mass function is a Boltzmann distribution over2k binary states

3073

THEIS, GERWINN, SINZ AND BETHGE

Figure 2: Boltzmann machines with different constraints on their connectivity. Filled nodes denote
visible variables, unfilled nodes denote hidden variables.A: A fully connected Boltzmann
machine.B: A restricted Boltzmann machine.C: A semi-restricted Boltzmann machine,
which in contrast to RBMs also allows connections between the visible units.

s∈ {0,1}k which is defined in terms of anenergy function E,

q(s) =
1
Z

exp(−E(s)), Z = ∑
s

exp(−E(s)),

whereE is given by

E(s) =−
1
2

s⊤Ws−b⊤s=−
1
2 ∑

i, j

siwi j sj −∑
i

sibi

and depends on a symmetric weight matrixW ∈ R
k×k with zeros on the diagonal,wii = 0 for all

i = 1, ...,k, and bias termsb∈ R
k. Z is calledpartition functionand ensures the normalization ofq.

In the following, unnormalized distributions will be marked with an asterisk:

q∗(s) = Zq(s) = exp(−E(s)).

Of particular interest for building DBNs arelatent variable Boltzmann machines, that is, Boltzmann
machines for which the statess are only partially observed (Figure 2). We will refer to states of
observed or visible random variables asx and to states of unobserved or hidden random variables as
y, such thats= (x,y).

Maximum likelihood (ML) learning can be implemented by following the gradient ofthe log-
likelihood. In Boltzmann machines, this gradient is conceptually simple yet computationally hard
to evaluate. The gradient of the expected log-likelihood with respect to someparameterθ of the
energy function is (e.g., Salakhutdinov, 2009):

Ep̃(x)

[

∂
∂θ

logq(x)

]

= Eq(x,y)

[

∂
∂θ

E(x,y)

]

−Ep̃(x)q(y|x)

[

∂
∂θ

E(x,y)

]

. (1)

The first term on the right-hand side of this equation is the expected gradient of the energy function
when both hidden and visible states are sampled from the model, while the second term is the
expected gradient of the energy function when the hidden states are drawn from the conditional
distribution of the model, given a visible state drawn from the data distribution, ˜p(x).

3074

IN ALL L IKELIHOOD , DEEPBELIEF IS NOT ENOUGH

Evaluating these expectations, however, is computationally intractable for allbut the simplest
models. Even approximating the expectations with Monte Carlo methods is typically very slow
(Long and Servedio, 2010). Two measures can be taken to make learningin Boltzmann machines
feasible: constraining the Boltzmann machine in some way, or replacing the likelihood with a sim-
pler objective function. The latter approach led to the introduction of the contrastive divergence
(CD) learning rule (Hinton, 2002) which represents a tractable approximation to ML learning: In
CD learning, the expectation over the model distributionq(x,y) is replaced by an expectation over

qCD(x,y) = ∑
x0,y1

p̃(x0)q(y1 | x0)q(x | y1)q(y | x),

from which samples are obtained by taking a samplex0 from the data distribution, updating the
hidden units, updating the visible units, and finally updating the hidden units again, while in each
step keeping the respective set of other variables fixed. This corresponds to a single sweep of Gibbs
sampling through all random variables of the model plus an additional updateof the hidden units.
If insteadn sweeps of Gibbs sampling are used, the learning procedure is generally referred to as
CD(n) learning. In the limit of largen, ML learning is regained (Salakhutdinov, 2009). An improved
sampling scheme is offered bypersistent contrastive divergence(PCD), in which the Markov chain
is initialized not with a sample from the data distribution, but with the state of the Markov chain at
the previous update of the gradient (Younes, 1989; Tieleman, 2008).

2.2 Restricted Boltzmann Machines

The first expectation on the right-hand side of Equation 1 can be made analytically tractable by
constraining the energy function such that no direct interaction between two visible units or two
hidden units is possible (Smolensky, 1986; Hinton, 2002),

E(x,y) =−x⊤Wy−b⊤x−c⊤y.

Such a model is called a restricted Boltzmann machine (RBM). The corresponding graph has no
connections between the visible units and no connections between the hiddenunits (Figure 2).
Importantly, the unnormalized marginal distributionsq∗(x) andq∗(y) can now be computed analyti-
cally by integrating out the respective other set of variables. The unnormalized marginal distribution
of the visible units becomes

q∗(x) = exp(b⊤x)∏
j
(1+exp(w⊤j x+c j)). (2)

Two related models also used in this article are theGaussian RBM(GRBM) (Salakhutdinov,
2009) and thesemi-restricted Boltzmann machine(SRBM) (Osindero and Hinton, 2008). The
GRBM employs continuous visible units and binary hidden units and can thus beused to model
continuous data. Its energy function is given by

E(x,y) =
1

2σ2 ||x−b||2−
1
σ

x⊤Wy−c⊤y.

A somewhat more general definition allows a differentσ for each individual visible unit (Salakhutdi-
nov, 2009). The conditional distributionq(x | y) of a GRBM is a multivariate Gaussian distribution,

q(x | y) =N (x;σWy+b,σ2I).

3075

THEIS, GERWINN, SINZ AND BETHGE

Each binary state of the hidden units encodes one mean, whileσ controls the variance of each
Gaussian and is the same for all hidden units. The GRBM can therefore be interpreted as a mixture
of an exponential number of Gaussian distributions with fixed, isotropic covariance and parameter
sharing constraints.

In an SRBM, only the hidden units are constrained to have no direct connections to each other
while the visible units are unconstrained (Figure 2). Analytic expressions are therefore only avail-
able forq∗(x) but not forq∗(y) and the visible units are no longer independent given a state for the
hidden units.

2.3 Deep Belief Networks

Figure 3: A graphical model representation of a two-layer deep belief network composed of two
RBMs. The connections of the first layer are directed.

DBNs (Hinton and Salakhutdinov, 2006) are hierarchical generative models composed of sev-
eral layers of RBMs or one of their generalizations. Letq(x,y) andr(y,z) be the densities of two
RBMs over visible statesx and hidden statesy andz. Then the joint probability mass function of a
two-layer DBN is defined to be

p(x,y,z) = q(x | y)r(y,z).

The resulting model is best described not as a deep Boltzmann machine but as a graphical model
with undirected connections betweeny andz and directed connections betweenx andy (Figure 3).
This definition can be recursively extended to DBNs with three or more layers by replacingr(y,z)
with another DBN. DBNs with an arbitrary number of layers have been shown to be universal
approximators even if the number of hidden units in each layer is fixed to the number of visible
units (Sutskever and Hinton, 2008). DBNs are easily generalized by allowing more general models
as layers, such as the GRBM and the SRBM.

The learning procedure introduced by Hinton et al. (2006) for training DBNs makes two ap-
proximations to ML learning. The first approximation is made by training the DBN ina greedy
manner: After the first layer of the model has been trained to approximate thedata distribution, its
parameters are fixed and only the parameters of the second layer are optimized. If θ is a parameter

3076

IN ALL L IKELIHOOD , DEEPBELIEF IS NOT ENOUGH

of the second-layer densityr, the gradient of the DBN’s log-likelihood with respect toθ is

∂
∂θ

logp(x) = ∑
y

p(y | x)
∂

∂θ
logr(y). (3)

However, exact sampling from the posterior distributionp(y | x) is difficult. In order to make the
training feasible, the posterior distribution is replaced by the factorial distributionq(y | x). Training
the DBN in this manner optimizes a variational lower bound on the log-likelihood (Hinton et al.,
2006),

∑
y

q(y | x) logr(y)≤ logp(x)+const, (4)

whereconstis constant inθ, which is a parameter ofr. Taking the derivative of the left-hand side of
Equation 4 with respect toθ yields (3) with the posterior distributionp(y | x) replaced byq(y | x).
The greedy learning procedure can be generalized to more layers by training each additional layer
to approximate the distribution obtained by conditionally sampling from each layerin turn, starting
with the lowest layer.

After finishing the greedy training, Hinton et al. (2006) suggested to use the wake-sleep algo-
rithm (Hinton et al., 1995) to fine-tune the parameters. Like the greedy algorithm, the wake-sleep
algorithm optimizes a lower bound on the log-likelihood of the model, but in contrast optimizes all
parameters concurrently. In addition, a separate set of RBMs is used and adapted to more closely
approximate the DBN’s posterior distribution over hidden units.

3. Likelihood Estimation

In this section, we will discuss the problem of estimating the likelihood of a two-layer DBN with
joint density

p(x,y,z) = q(x | y)r(y,z). (5)

That is, for a given visible statex, to estimate the value of

p(x) = ∑
y,z

q(x | y)r(y,z).

We will later generalize this problem to more layers. As before,q(x,y) and r(y,z) refer to the
densities of two RBMs.

Two difficulties arise when dealing with this problem in the context of DBNs. First, r(y,z)
depends on a partition functionZr whose exact evaluation requires integration over an exponential
number of states. Second, despite being able to integrate analytically overz, even computing just
the unnormalized likelihood still requires integration over an exponential number of hidden statesy,

p∗(x) = ∑
y

q(x | y)r∗(y).

After briefly reviewing previous approaches to resolving these difficulties, we will propose an un-
biased estimator forp∗(x), its contribution being a possible solution to the second problem, and
discuss how to construct a consistent estimator forp(x) based on this result.

3077

THEIS, GERWINN, SINZ AND BETHGE

3.1 Importance Sampling

Since our estimator relies on importance sampling, we briefly review it here. Importance sampling
is a Monte Carlo integration method for unbiased estimation of expectations (MacKay, 2003) and
is based on the following observation: Lets be a density withs(x)> 0 wheneverq∗(x)> 0 and let
w(x) = q∗(x)

s(x) , then

∑
x

q∗(x) f (x) = ∑
x

s(x)
q∗(x)
s(x)

f (x) = Es(x) [w(x) f (x)]

for any functionf . s is called aproposal distributionfor q andw(x) is calledimportance weight. If
f (x) = 1 for all x, we get

Es(x) [w(x)] = ∑
x

s(x)
q∗(x)
s(x)

= Zq. (6)

Estimates of the partition functionZq can therefore be obtained by drawing samplesx(n) from a
proposal distribution and averaging the resulting importance weightsw(x(n)). It was pointed out
in Minka (2005) that minimizing the variance of the importance sampling estimate of thepartition
function (6) is equivalent to minimizing anα-divergence1 between the proposal distributions and
the true distributionq. Therefore, for an estimator to work well in practice,s should be both close
to q and easy to sample from.

3.2 Previous Work

The following is a brief summary of existing approaches to approximating the likelihood of RBMs
and DBNs.

3.2.1 ANNEALED IMPORTANCESAMPLING

Salakhutdinov and Murray (2008) have shown howannealed importance sampling(AIS) (Neal,
2001) can be used to estimate the partition function of an RBM. AIS tries to circumvent some of
the problems associated with finding a suitable proposal distribution. For a sequence of proposal
distributionss1, ...,sn and corresponding transition operatorsT1, ...,Tn, one can show that

Zq = ∑
x

sn(xn−1)Tn−1(xn−2;xn−1) · · ·T1(x0;x1)
s∗n−1(xn−1)

sn(xn−1)
· · ·

q∗(x0)

s∗1(x0)
,

where the sum integrates over allx=(x0, ...,xn−1). Hence, in order to estimate the partition function,
we can draw independent samplesxn−1 from a simple distributionsn, use the transition operators
to generate samplesxn−2, ...,x0 from increasingly complex distributions, and average the resulting
product of fractions given in the preceding equation. For details on howto choose the intermediate
distributions and transition operators, see Salakhutdinov and Murray (2008).

1. With α = 2. α-divergences are a generalization of the KL-divergence.

3078

IN ALL L IKELIHOOD , DEEPBELIEF IS NOT ENOUGH

3.2.2 ESTIMATING LOWER BOUNDS

In Salakhutdinov and Murray (2008) it was also shown how estimates of a lower bound on the
log-likelihood,

logp(x)≥∑
y

q(y | x) log
r∗(y)q(x | y)

q(y | x)
− logZr (7)

= ∑
y

q(y | x) logr∗(y)q(x | y)+H[q(y | x)]− logZr , (8)

can be obtained, provided the partition functionZr is given. This is the same lower bound as the
one optimized during greedy learning (4). Sinceq(y | x) is factorial, the entropyH[q(y | x)] can
be computed analytically. The only term which still needs to be estimated is the firstterm on the
right-hand side of Equation 8. This was achieved in Salakhutdinov and Murray (2008) by averaging
over samples drawn fromq(y | x).

3.2.3 CONSISTENTESTIMATES

In Murray and Salakhutdinov (2009), a rather elaborate sampling schemewas devised to give un-
biased estimates for the inverse posterior probability1p(y|x) of some fixed hidden statey. These
estimates were then used to get unbiased estimates ofp∗(x) by taking advantage of the factp∗(x) =
p∗(x,y)
p(y|x) . The corresponding partition function was estimated using AIS, giving riseto a consistent

estimator. While the estimator’s Markov chain was constructed such that arbitrarily short runs of
the Markov chain result in unbiased estimates ofp∗(x), even a single step of the Markov chain is
slow compared to sampling fromq(y | x), as it was done for the estimation of the lower bound (7).

3.3 A New Estimator for DBNs

The estimator we will introduce in this section shares the same formal propertiesas the estimator
proposed in Murray and Salakhutdinov (2009), but will use samples drawn from q(y | x). This will
make it conceptually as simple and as easy to apply in practice as the estimator forthe lower bound
(7), while providing us with consistent estimates ofp(x).

Let p(x,y,z) be the joint density of a DBN as defined in Equation 5. By applying Bayes’
theorem, we obtain

p(x) = ∑
y

q(x | y)r(y)

= ∑
y

q(y | x)
q(x)
q(y)

r(y)

= ∑
y

q(y | x)
q∗(x)
q∗(y)

r∗(y)
Zr

. (9)

A natural choice for an estimator ofp(x) is therefore

p̂N(x) =
1
N ∑

n

q∗(x)

q∗(y(n))

r∗(y(n))
Zr

(10)

= q∗(x)
1

ZrN
∑
n

r∗(y(n))

q∗(y(n))

3079

THEIS, GERWINN, SINZ AND BETHGE

wherey(n) ∼ q(y(n) | x) for n = 1, ...,N. For RBMs, the unnormalized marginalsq∗(x),q∗(y) and
r∗(y) can be computed analytically (2). Also note that the partition functionZr only has to be
calculated once for all visible states we wish to evaluate. We are not aware of any work which
tried to use this estimator to estimate the likelihood of DBNs. In the following, we will discuss and
investigate its properties.

Under the assumption that the partition functionZr is known, p̂N(x) provides an unbiased esti-
mate ofp(x) since the sample average is always an unbiased estimate of the expectation. However,
Zr is generally intractable to compute exactly so that approximations become necessary. If in the es-
timate (10) the partition functionZr is replaced by an unbiased estimateẐr , then the overall estimate
will tend to overestimate the true likelihood,

E
[

p̂∗N(x)

Ẑr

]

= E
[

1

Ẑr

]

E [p̂∗N(x)]

≥
1

E
[

Ẑr
] p∗(x) = p(x),

wherep̂∗N(x) = Zr p̂N(x) is an unbiased estimate of the unnormalized density. The second step is a
consequence of Jensen’s inequality and the averages are taken with respect to ˆpN(x) andẐr , which
are independent;x is held fix.

While the estimator loses its unbiasedness for unbiased estimates of the partition function, it
still retains its consistency. Since ˆp∗N(x) is unbiased for allN∈N, it is also asymptotically unbiased,

plim
N→∞

p̂∗N(x) = p∗(x).

Furthermore, ifẐr,N for N ∈ N is a consistent sequence of estimators for the partition function, it
follows that

plim
N→∞

p̂∗N(x)

Ẑr,N
=

plim
N→∞

p̂∗N(x)

plim
N→∞

Ẑr,N
=

p∗(x)
Zr

= p(x).

Unbiased and consistent estimates ofZr can be obtained using AIS (Salakhutdinov and Murray,
2008). Note that although the estimator tends to overestimate the true likelihood in expectation and
is unbiased in the limit, it is still possible for it to underestimate the true likelihood most of the time.
This behavior can occur if the distribution of estimates is heavily skewed.

An important question which remains is whether the estimator is also good in terms ofstatistical
efficiency. The more efficient an estimator, the less samples are required toobtain reliable estimates
of the likelihood. If we cast Equation 9 into the form of Equation 6, we see that our estimator per-
forms importance sampling with proposal distributionq(y | x) and target distributionp(y | x), where
p(x) can be seen as the partition function of an unnormalized distributionp(x,y). As mentioned
earlier, the efficiency of importance sampling estimates of partition functions depends on how well
the proposal distribution approximates the true distribution. Therefore, for the proposed estimator
to work well in practice,q(y | x) should be close top(y | x). Note that a similar assumption is made
when optimizing the variational lower bound during greedy learning. The lower bound (4) can be
shown to be equal to

∑
y

q(y | x) logr(y) = logp(x)−DKL(q(y | x)||p(y | x))+const, (11)

3080

IN ALL L IKELIHOOD , DEEPBELIEF IS NOT ENOUGH

Estimatep(x0)

1: p̂← q∗1(x0)
2: for l = 1 to L−1 do
3: xl ∼ ql (xl | xl−1)

4: p̂← p̂·
q∗l+1(xl)

q∗l (xl)

5: end for
6: return p̂/ZL

Figure 4: Pseudocode for generating an unbiased estimate ˆp of the probablity ofx0 under a DBN
with L layers. Layerl here has unnormalized densityq∗l . Note that in practice, an average
over multiple such estimates will generally be taken. Also note thatZL will typically have
to be estimated as well.

where againconst is constant in the parameters ofr. Training the DBN by optimizing the above
lower bound therefore minimizes the KL-divergence between the true posterior and the approximat-
ing posterior, thereby making it a better proposal distribution. We will further address the question
of statistical efficiency empirically in the experimental section.

The definition of the estimator for two-layer DBNs readily extends to DBNs withL layers.
If p(x) is the marginal density of a DBN whose layers are RBMs with densitiesq1(x0,x1), ...,
qL(xL−1,xL) and partition functionsZ1, ...,ZL, and if we refer to the states of the random vectors
in each layer byx0, ...,xL, wherex0 contains the visible states andxL contains the states of the top
hidden layer, then

p(x0) = ∑
x1,...,xL

qL(xL−1,xL)
L−1

∏
l=1

ql (xl−1 | xl)

= ∑
x1,...,xL−1

qL(xL−1)
L−1

∏
l=1

ql (xl | xl−1)
q∗l (xl−1)

q∗l (xl)

= q∗1(x0)
1
ZL

∑
x1,...,xL−1

L−1

∏
l=1

ql (xl | xl−1)
q∗l+1(xl)

q∗l (xl)
.

In order to estimate this term, hidden statesx1, ...,xL−1 are generated in a feed-forward manner using

the conditional distributionsql (xl | xl−1). The weights
q∗l+1(xl)

q∗l (xl)
are computed along the way, then

multiplied together and finally averaged over all drawn states. Intuitively, theestimation process
can be imagined as first assigning a basic value using the first layer and then correcting this value
based on how the densities of each pair of consecutive layers relate to each other. Pseudocode for
this procedure is given in Figure 4.

3.4 Potential Log-Likelihood

In this section, we will discuss a concept which appears in Roux and Bengio (2008) and which
we will dub thepotential log-likelihood. By considering a best-case scenario, the potential log-
likelihood can give us an idea of the log-likelihood that can at best be achieved by training additional

3081

THEIS, GERWINN, SINZ AND BETHGE

Figure 5: A cartoon explaining the potential log-likelihood. For each choicefor the second layer
of a DBN, we obtain a different value for the log-likelihood and its lower bound. From
all possible choices, we take the distribution which maximizes the lower bound (1) and
compute its log-likelihood (2). We call this particular log-likelihood thepotential log-
likelihood. It is still possible that the log-likelihood is larger for other distributions (3).
However, it is unlikely that such a distribution will be found, as the second layer is opti-
mized with respect to the lower bound.

layers using the greedy learning of Hinton and Salakhutdinov (2006). Itsusefulness will become
apparent in the experimental section.

Let q(x,y) be the distribution of an already trained RBM or one of its generalizations, and let
r(y) be a second distribution—not necessarily the marginal distribution of any Boltzmann machine.
As in section 2.3,r(y) serves to replace the prior distribution over the hidden variables,q(y), and
to thereby improve the marginal distribution overx, ∑yq(x | y)r(y). As above, let ˜p(x) denote the
data distribution. Our goal is to increase the expected log-likelihood of the model distribution with
respect tor,

∑
x

p̃(x) log∑
y

q(x | y)r(y). (12)

In applying the greedy learning procedure, we try to reach this goal by optimizing a lower bound on
the log-likelihood (4), or equivalently, by minimizing the following KL-divergence:

DKL

[

∑
x

p̃(x)q(y | x)||r(y)

]

=−∑
x

p̃(x)∑
y

q(y | x) logr(y)+const,

whereconstis constant inr.
The KL divergence is minimal ifr(y) is equal to

∑
x

p̃(x)q(y | x) (13)

3082

IN ALL L IKELIHOOD , DEEPBELIEF IS NOT ENOUGH

for everyy. Since RBMs are universal approximators (Roux and Bengio, 2008),this distribution
could in principle be approximated arbitrarily well by a single, potentially very large RBM. Assume
therefore that we have found this distribution, that is, we have maximized the lower bound with
respect to all possible distributionsr. Then, the distribution for the DBN which we obtain by
replacingr in (12) with (13) is given by

∑
y

q(x | y)∑
x0

p̃(x0)q(y | x0) = ∑
x0

p̃(x0)∑
y

q(x | y)q(y | x0)

= ∑
x0

p̃(x0)q0(x | x0),

where we have used thereconstruction distribution

q0(x | x0) = ∑
y

q(x | y)q(y | x0),

which can be sampled from by conditionally sampling a state for the hidden units, and then, given
the state of the hidden units, conditionally sampling areconstructionof the visible units. The log-
likelihood we achieve with this lower-bound optimal distribution is given by

∑
x

p̃(x) log∑
x0

p̃(x0)q0(x | x0).

We will refer to this log-likelihood as thepotential log-likelihood. Note that the potential log-
likelihood is not a true upper bound on the log-likelihood that can be achieved with greedy learn-
ing, as suboptimal solutions with respect to the lower bound might still give riseto higher log-
likelihoods. However, if such a solution was found, it would have been rather by accident than by
design. The situation is depicted in the cartoon in Figure 5.

4. Experiments

We performed two types of experiments. In the first, we tested the performance of our estimator.
In the second, we further investigated the capabilities of a DBN architectureproposed by Osindero
and Hinton (2008) as a model for natural images. The model consists of a GRBM in the first layer
and SRBMs in the subsequent layers.

For all but the topmost layer, our estimator requires evaluation of the unnormalized marginal
density over hidden states (see Figure 4). In an SRBM, however, integrating out the visible states is
analytically intractable. Fortunately, an RBM with the same hidden-to-visible connections and the
same bias weights but without the lateral connections turned out to be an efficient enough proposal
distribution. We estimated the unnormalized SRBM marginals using

q∗(y) = ∑
x

q∗(x,y) = ∑
x

q′(x | y)
q∗(x,y)
q′(x | y)

≈
1
N ∑

n

q∗(x(n),y)

q′(x(n) | y)
,

whereq′ is the density of an RBM which approximates the density of the SRBM,q.

4.1 Testing the Estimator

As a first test, we considered a three-layer model for which the likelihood is still tractable. It em-
ployed 15 hidden units in each of the first two layers, 50 hidden units in the third layer and was

3083

THEIS, GERWINN, SINZ AND BETHGE

layers true neg. log-likelihood est. neg. log-likelihood
1 2.0482569 2.0484440
2 2.0478912 2.0477577
3 2.0478672 2.0474685

Table 1: True and estimated negative log-likelihood in bits per component of a small DBN trained
on 4 by 4 image patches. The estimated likelihood closely matches the true likelihood.
Adding more layers to the network did not help to improve the performance if theGRBM
employed only few hidden units.

trained on 4 by 4 pixel image patches taken from the van Hateren image data set (van Hateren and
van der Schaaf, 1998). The image patches were preprocessed usinga standard battery of prepro-
cessing steps including a log-transformation, a centering step and a whitening step. Additionally,
the DC component was projected out and only the remaining 15 components of each patch were
used for training (for a more detailed description of the preprocessing, see Eichhorn et al., 2009).
Brute-force and estimated results are given in Table 1.

We also compared results obtained with our estimator applied to larger models to results ob-
tained by Murray and Salakhutdinov (2009). Using the same preprocessing of the image patches
and the same hyperparameters as in Murray and Salakhutdinov (2009), we trained a two-layer model
with 2000 hidden units in the first layer and 500 hidden units in the second layer on 20 by 20 pixel
van Hateren image patches. In contrast to the preprocessing of the smallerimage patches, the DC
component was not removed. We used 150000 patches for training and 50000 patches for testing
and obtained a negative log-likelihood of 2.047 bits per component on the test set, compared to
2.032 bits reported by Murray and Salakhutdinov (2009).

We further evaluated a two-layer model with 500 hidden units in the first and 2000 hidden units
in the second layer trained on a binarized version of the MNIST data set. For the first layer we
took the parameters from Salakhutdinov (2009), which were available online. We then tried to
match the training of the second-layer RBM with 2000 hidden units using the information given in
Salakhutdinov (2009) and Murray and Salakhutdinov (2009). Evaluating the model on the whole
test set, we obtained a result of 0.357 bits per component compared to 0.358bits reported by Murray
and Salakhutdinov (2009).

We measured the statistical efficiency of our estimator in terms of theeffective sample size(ESS)
(Kong et al., 1994). ForN samples, target densityp and proposal densityq, the ESS is defined to be

N

1+Varq(y)
[

p(y)
q(y)

] =
N

1+D2[p(y)||q(y)]
.

D2 is theα-divergence withα = 2 and is also known as theχ2-divergence. In our case, the target
distribution is the conditional distribution over the hidden states of a DBN givena state for the
visible units. If p equalsq, then the variance of the importance weights is zero, so that a single
sample from the posterior would suffice to get a perfect estimate of the unnormalized probability of
any data point. In that case, the ESS would beN.

Note that the success of training DBNs is also influenced by the ESS. The tightness of the lower
bound optimized during training depends on the goodness of the same approximation, although it is
measured in terms of the KL-divergence rather than theχ2-divergence (see Equation 11).

3084

IN ALL L IKELIHOOD , DEEPBELIEF IS NOT ENOUGH

Figure 6: Left: Distributions of relative effective sample sizes (ESS) for two-layer DBNs(thick
lines) and three-layer DBNs (thin lines) trained on 4 by 4 pixel image patchesusing
different training rules. The larger the ESS for a given data point, the more efficient is
our estimator in determining its probability.Right: Ditributions of relative ESSs for two
two-layer models trained on 20 by 20 pixel image patches. Both models were trained with
PCD but using different hyperparameters. While the GRBM yielded a betterperformance
for smallerσ, it also caused the evaluation and the training of subsequent layers to be
more difficult.

Because the distributions we are interested in are conditional distributions which are dependent
on the state of the visible units, we obtain a different ESS for each data point.Hence, we get
a distribution over ESSs for each model (Figure 6). We found that the quality of the proposal
distribution was strongly dependent on the parameters of the model. Traininga model on the larger
image patches using the same hyperparameters as used by Osindero and Hinton (2008) and Murray
and Salakhutdinov (2009), for example, led to a distribution of ESSs which was sharply peaked
around 0.75. This made it easier to train subsequent layers and to evaluatethe two-layer model.
Using a smaller value for the Gaussian noise, on the other hand, led to a betterlikelihood but also
a worse approximation to the posterior distribution. Consequently, getting accurate estimates of the
log-likelihood took longer (right plot in Figure 7).

On a single core of an AMD Opteron 6174 machine with 2.20 GHz and with an implementation
written in Python, it took us about 10 minutes to get accurate results for 50 data points taken from
the MNIST data set. Murray and Salakhutdinov (2009) report that they needed about 50 minutes
on a Pentium Xeon 3.00 GHz to get stable results for 50 data points. However, a fair comparison of
computational efficiency is difficult, even when the comparison is performedwith the same machine
and the same programming framework is used. For the larger models trained on20 by 20 van
Hateren image patches, it took us less than a second and up to a few minutes to get reasonably
accurate estimates for 50 samples (Figure 7). Note that even for the case where the distribution of
ESSs is peaked around a value very close to zero, evaluating a large number of training samples was

3085

THEIS, GERWINN, SINZ AND BETHGE

Figure 7: Left: The log-likelihood in bits per component was estimated for 50 test samples using
different numbers of proposal samples. The difference between each estimate and the
most accurate estimate was then measured. The plots show the mean difference and its
standard deviation relative to the time it takes to compute the estimates. The bias in
the estimates is due to the logarithm.Right: The same plot for a different model. The
time it takes to get accurate estimates depends on the parameters of the model. Using the
parameters obtained with the hyperparameters suggested in (Osindero andHinton, 2008),
already a single sample yielded good estimates of the log-likelihood (about 0.2 seconds).
But even for the case where our estimator showed the least statistical efficiency, it only
took a few minutes to evaluate 50 samples on a single CPU.

more than feasible. To further reduce computation time, the evaluation can easily be parallelized by
splitting the test set into batches which are evaluated separately.

One likely reason for the efficiency of our estimator is the optimization of the lower bound
during training (see discussion around Equation 11). This means that if themodel is trained with a
different learning algorithm, it should become less efficient. We found thatthis was indeed the case
if models were further optimized using the wake-sleep algorithm (Figure 6).

4.2 Model Comparison

We compared the DBN’s performance to the performance of complete ICA (Comon, 1994; Eich-
horn et al., 2009) as well as several mixture distributions. Perhaps closest in interpretation to the
GRBM as well as to the DBN is the mixture of isotropic Gaussian distributions (MoIG) with identi-
cal covariances and varying means. Recall that the GRBM can be interpreted as a mixture of a very
large number of isotropic Gaussian distributions with weight sharing constraints. After the parame-
ters of the GRBM have been fixed, adding layers to the network only changes the prior distribution
over the Gaussians, but does not alter their means. Other models taken into account are mixtures
of Gaussians with unconstrained covariance but zero mean (MoG) and mixtures of elliptically con-
toured distributions with zero mean (MoEC) (Bethge and Hosseini, 2007), ofwhich a special case
is the more well-known mixture of Gaussian scale mixtures (e.g., Guerrero-Colon et al., 2008).

3086

IN ALL L IKELIHOOD , DEEPBELIEF IS NOT ENOUGH

Figure 8: A comparison of different models. For each model, the estimated negative log-likelihood
in bits per data component is shown, averaged over 10 independent trialswith indepen-
dent training and test sets. For the GRBM and DBN trained on 20 by 20 image patches,
the performance obtained from a single trial is shown. The number behind each model
hints either at the number of hidden units or at the number of mixture componentsused.
DBNs were trained using the greedy learning rule and fine-tuned using thewake-sleep al-
gorithm. Boltzmann machines were trained with PCD. Larger values correspond to worse
performance.

Using PCD, we trained a three-layer model with 100 hidden units per layer onthe smaller 4 by
4 image patches. As expected, both the GRBM and the DBN performed better than the mixture of
isotropic Gaussians. Strikingly, however, the DBN was outperformed even by the mixture of Gaus-
sians with just two components. The overall results suggest that mixture models with freely varying
covariance are better suited for modeling the statistics of natural images than mixture models with
constrained covariance (Figure 8), which is consistent with previous observations that having a flex-
ible model of the covariance structure is important (e.g., Karklin and Lewicki,2009; Ranzato et al.,
2010a).

Adding a second layer to the network only helped very little and we found thatthe better the
performance achieved by the GRBM, the smaller the improvement contributed by subsequent layers.
For the hyperparameters that led to the best performance, adding a third layer had no effect on the
likelihood and in some cases even led to a decrease in performance (Figure9). This was despite the
apparently reasonable approximation to the posterior distribution over the hidden states (Figure 6).
The hyperparameters were selected by performing separate grid searches for the different layers
(for details, see Appendix A). PCD on average yielded a slightly worse performance than CD(5) or
CD(10), indicating that the Markov chain used during training to sample fromthe model converged

3087

THEIS, GERWINN, SINZ AND BETHGE

Figure 9: Left: Estimated performance of three DBN-100 models trained on 4× 4 van Hateren
image patches using the greedy learning rule. Each point represents an average over
10 models trained on different training sets. Smaller values correspond to better perfor-
mance. Error bars were too small to be visible and were therefore left out.The dashed
lines indicate the estimated negative potential log-likelihood.Right: Performance af-
ter fine-tuning the model parameters with the two-layer and three-layer modelswith the
wake-sleep algorithm.

quickly to the true distribution. For other sets of hyperparameters we foundthat adding a third layer
was still able to yield some improvement, but the overall performance of the three-layer model
achieved with these hyperparameters was worse.

We also trained a two-layer DBN with 500 hidden units in the first layer and 2000 hidden units
in the third layer on 20 by 20 pixel image patches. Using PCD instead of CD(1)and a smaller
value for σ led to a performance which is about 0.18 bits per pixel better than the performance
reported by Murray and Salakhutdinov (2009). However, the performance achieved by the model
was again worse than the performance achieved by other, simpler models. As for the smaller model,
the improvement in performance of the GRBM led to a smaller improvement gained by adding a
second layer to the model. Despite the much larger second layer, the performance gain induced
by the second layer was even less than for the smaller models. Both patch sizes led to the same
ordering of the models and resulted in an overall similar picture (Figure 8).

The improvement of the DBN over the GRBM trained with PCD is about 0.05 bits per compo-
nent for the smaller model and 0.01 bits for the larger model. An important question is why this
improvement is so small. Insight into this question can be gained by evaluating thepotential log-
likelihood, as it represents a practical limit to the performance which can be achieved by means of
the approximate greedy learning procedure and could in principle be evaluated even before train-
ing any additional layers. If the potential log-likelihood of a GRBM is close to itslog-likelihood,
adding layers is a priori unlikely to prove useful. Unfortunately, exact evaluation of the potential
log-likelihood is intractable, as it involves two nested integrals with respect to the data distribution,

∫
p̃(x) log

∫
p̃(x0)q0(x | x0)dx0dx. (14)

3088

IN ALL L IKELIHOOD , DEEPBELIEF IS NOT ENOUGH

Figure 10: Estimated negative potential log-likelihood of the GRBM. Each plotrepresents an av-
erage over 10 GRBMs trained on different training sets. Error bars indicate one stan-
dard deviation. After 512000 samples to approximate the integrals of the potential log-
likelihood, the estimates have still not converged, suggesting that the true potential log-
likelihood is even worse.

Nevertheless, optimistic estimates of this quantity can still tell us something about theDBN’s capa-
bility to improve over the GRBM. We estimated the potential log-likelihood using the sameset of
data samples to approximate both integrals, thereby encouraging optimistic estimation. Note that
estimating the potential log-likelihood in this manner is similar to evaluating the log-likelihood of
a kernel density estimate on the training data, although the reconstruction distribution q0(x | x0)
might not correspond to a valid kernel. Also note that by taking more and moredata samples, the
estimate of the potential log-likelihood should become more and more accurate. Figure 10 there-
fore suggests that the negative potential log-likelihood of a GRBM trained with PCD is at least
1.72 or larger, which is still worse than the performance of, for example, themixture of Gaussian
distributions with 5 components.

The potential log-likelihood is a joint property of the trained first-layer modeland the greedy
learning procedure. If the greedy algorithm is responsible for the weakperformance of the model, it
should be possible to get better results by using a non-greedy strategy. We therefore tried to improve
the model’s performance by fine-tuning the weights with the wake-sleep algorithm (Hinton et al.,
1995). We trained the model for another 100 epochs using the same set ofhyperparameters but
with smaller learning rates. This led to a small improvement (Figure 9), but the likelihood remained
behind the performance of the mixture of Gaussians with two components. By applying the same
strategy to the larger model, we were unable to get any further improvements.If the learning rate
was chosen large enough to cause a measurable change in performance, the performance of the
model decreased.

3089

THEIS, GERWINN, SINZ AND BETHGE

5. Discussion

In this paper, we have introduced a new estimator for the likelihood of DBNs.We have shown that
it can be very efficient for models trained with the greedy learning algorithmand efficient enough
to evaluate models fine-tuned using the wake-sleep algorithm. However, as we have also seen, the
estimator’s performance depends on the particular parameters of the model and the way the model
was trained. The estimator is unbiased for the unnormalized likelihood, but only asymptotically
unbiased for the log-likelihood. When evaluating the log-likelihood, this meansthat the number of
samples from the proposal distribution has to be chosen large enough to ensure that the effects of
the bias are small. Since the number of proposal samples is the only parameter of our estimator and
the evaluation can generally be performed quickly, a good way to do this is to test the estimator for
different numbers of proposal samples on a smaller test set.

Using our estimator, we have shown that DBNs based on GRBMs and SRBMsare not well
suited for capturing the statistics of natural images. Since the family of DBNs includes a very large
number of models if we allow arbitrary Boltzmann machines in the definition, this of course does
not imply that no DBN is able to model natural images well. In fact, other models likethe mcRBM
or mPoT (Ranzato and Hinton, 2010; Ranzato et al., 2010b) promise to be much better models
of natural images than the GRBM and can be used to construct DBNs. One goal of this paper,
however, was to see if a deep network with simple layer modules could perform well as a generative
model for natural images. While more complex Boltzmann machines are likely to achieve a better
likelihood, it is not clear why they should also be good choices as layer modules for constructing
DBNs. In particular, it is not clear why they should also lead to large improvements through the
addition of layers. In our experiments, better performances achieved withthe first layer were always
accompanied by a decrease in the performance gained by adding layers.Note that a model which
achieves a high likelihood could still have a potential log-likelihood very closeto it. This would
make a model a better model for natural images, but not the best choice as alayer module for DBNs
trained with the greedy learning algorithm.

In Ranzato et al. (2011) it was shown that adding a second-layer RBM tothe mPoT model leads
to qualitatively different and visually more appealing samples. However, aswe have shown in this
work, the appearance of samples can be misleading when judging the generative performance of a
probabilistic model. For the DBN based on GRBMs and SRBMs we arrive at adifferent conclusion
about the model’s capabilities than Osindero and Hinton (2008), who basedtheir conclusions mainly
on statistics derived from model samples. We believe that it is therefore worth the effort to come up
with statistical estimators which directly target the likelihood or related quantities.

The relationship between generative models and models used for object recognition is not yet
fully understood. Hence, the implications of our results on the object recognition performance
of features learned by a DBN are also not clear. Most DBNs used to learn features for solving
supervised tasks rarely exceed more than a few layers (e.g., Ranzato and Hinton, 2010 show that the
effects of adding layers to a GRBM or mcRBM on object recognition performance can be small or
even adverse). This observation might be related to the observations madehere, that adding layers
does not help much to improve the likelihood on natural image patches. A possible explanation
for the small contribution of each layer would be that too little information is carried by the hidden
representations of each layer about the respective visible states. This isconsistent with a small
potential log-likelihood and would affect both object recognition and generative performance. If
the visible states can be perfectly reconstructed from the hidden states, that is, whenq0(x | x0) =

3090

IN ALL L IKELIHOOD , DEEPBELIEF IS NOT ENOUGH

δ(x− x0), the potential log-likelihood reduces to the negative entropy of the data—themaximum
value for the likelihood that any model can achieve.

A much less frequently used hierarchical model ishierarchical ICA, for which a greedy learning
algorithm was introduced by Chen and Gopinath (2001) and which can be seen as a special case of
projection pursuit density estimation. In ICA, all the information about a visiblestate is retained in
the hidden representation, so that the potential log-likelihood is optimal for thislayer module. As
shown in Figure 8, already a single ICA layer can compete with a DBN based on RBMs. Further-
more, adding layers to the network is guaranteed to improve the likelihood of the model (Chen and
Gopinath, 2001) and not just a lower bound as with the greedy learning algorithm for DBNs. Hos-
seini and Bethge (2009) have shown that adding layers does indeed give significant improvements
of the likelihood, although it was also shown that hierarchical ICA cannotcompete with other, non-
hierarchical models of natural images. An interesting question is whether representations learned
by this model can also compete or outperform those learned by DBNs in supervised tasks. Compar-
ing the supervised performance of features learned with hierarchical ICA and the model discussed
here could shed further light on the importance of the likelihood when trainingDBNs for supervised
tasks.

A lot of research has been devoted to creating new layer modules (e.g., Roux et al., 2010; Ran-
zato and Hinton, 2010; Lee and Ng, 2007; Welling et al., 2005) and findingbetter approximations
to ML learning for training these (e.g., Gutmann and Hyvärinen, 2010; Sohl-Dickstein et al., 2009;
Tieleman, 2008). To our knowledge, much less work has been done to improve the general strategy
for training DBNs since its introduction. Currently, the lower layers are trained in a way which is
independent of whether additional layers will be added to the network. A better performance could
be achieved by devising alternative learning schemes in which the lower layers are optimized to bet-
ter assist the upper layers, for example by making sure that the potential log-likelihood stays large.
Directly regularizing with respect to the potential log-likelihood is difficult dueto the nested inte-
grals (see Equation 14). An improvement could nevertheless indirectly be achieved by maximizing
the information that is carried in the hidden representations about the states of the visible units.

An alternative strategy would be to use non-greedy learning strategies such as the wake-sleep
algorithm, for which the potential log-likelihood no longer plays a critical role.We showed that
in one case, the wake-sleep algorithm was able to further improve the likelihood. In another case,
we were unable to get any improvement. While more extensive tests are necessary before final
conclusions about its effectiveness should be made, its potential to improvethe likelihood of the
DBN discussed here seems rather limited.

A very recent paper by Ngiam et al. (2011) introduced an alternative approach to hierarchical
modeling of natural images. Instead of stacking probabilistic models on top of each other, the ap-
proach is based on a single Boltzmann machine in which the energy function itself is hierarchically
organized. This allows them to jointly train all parameters of the network and also to evaluate the
likelihood much more easily. The paper reports the likelihood of several instances of the model and
shows that the model is able to take advantage of multiple layers. Unfortunately, it missed to also
report the likelihood of other, more well known models of natural images. This makes it hard to
judge the performance of the model, as the absolute value of the likelihood is highly dependent on
the preprocessing of the data.

Despite good arguments for why hierarchical models should excel at modeling natural images,
no hierarchical model has been convincingly shown to yield state-of-the-art generative performance

3091

THEIS, GERWINN, SINZ AND BETHGE

and outperform other, much simpler models, such as the mixture of Gaussians, in terms of the
log-likelihood.

Acknowledgments

We would like to thank the anonymous reviewers for helpful comments and suggestions. We also
thank Iain Murray for providing us with a binarized version of the MNIST data set. This work is
supported by the German Ministry of Education, Science, Research and Technology through the
Bernstein award to Matthias Bethge (BMBF, FKZ: 01GQ0601) and the Max Planck Society.

Appendix A.

In all experiments, we used stochastic gradient descent with a batch size of 100 data points to train
DBNs. For the 4 by 4 pixel image patches, we used 5·104 training and 5·104 test samples in each
trial. For the case of 20 by 20 pixel image patches, we used 15·104 training and 5·104 test samples.

When PCD was used for training, the persistent Markov chain was updated using one Gibbs
sampling step before each computation of the gradient.

For the GRBM with 100 hidden units trained on 4 by 4 pixel image patches, we used aσ of
0.65 and trained the models for 200 epochs. Together with CD(1) we used a learning rate of 10−2

and weight decay of 10−2 times the learning rate. With PCD, CD(5) and CD(10) we used a learning
rate of 5·10−3. For all parameters and all models, a momentum parameter of 0.9 used.

We initialized the second-layer SRBM so that its marginal distribution matched thatof the
GRBM and trained it for 200 epochs. During training, approximate samples from the conditional
distribution of the visible units were obtained using 20 parallel mean field updates with a damping
parameter of 0.2 (Welling and Hinton, 2002). For all sampling schemes, we used a learning rate of
5·10−3 for hidden-to-visible connections and a learning rate of 5·10−4 for lateral connections. The
weight decay was set to 5·10−3. The third layer was randomly initialized and had to be trained for
500 epochs before convergence was reached. It employed the same hyperparameters as the second
layer.

The hyperparameters were selected by performing several grid searches. After the hyperpa-
rameters of the GRBM had been selected, we performed a second grid-search for the second-layer
SRBM and used the same hyperparameters for the third-layer SRBM. We performed separate grid
searches for CD(1) and PCD, but used the hyperparameters found for PCD also with CD(5) and
CD(10). Each grid search comprised 75 hyperparameter combinations for the GRBM and 45 hyper-
parameter combinations for the SRBM. After the hyperparameters had beenselected, we retrained
the model.

For the larger model applied to 20 by 20 pixel image patches, we trained both layers for 200
epochs using PCD. For the GRBM, we used aσ of 0.7, a learning rate of 10−3 and weight decay of
10−2. For the SRBM, we used a learning rate of 10−3 for the hidden-to-visible connections and 5·
10−4 for the lateral connections. We used 30 parallel mean field updates with a damping rate of 0.2
to sample the visible units. The hyperparameters of the GRBM were selected byperforming a grid
search over 66 hyperparameter combinations. For the SRBM we tried 18 different combinations.
Due to the high computational cost of training the two-layer model, we took the parameters which

3092

IN ALL L IKELIHOOD , DEEPBELIEF IS NOT ENOUGH

achieved the best result in the grid search for our comparison and evaluated it using a separate test
set.

Partition functions were estimated using AIS. For the smaller model we used 103 intermediate
distributions with a linear annealing schedule, 100 samples in the first and 103 samples in the second
and third layer. For the larger model we used a linear annealing schedule,2 · 104 intermediate
distributions and 100 importance samples in both layers. The transition operator for the SRBM was
implemented using Gibbs sampling. Conditioned on the hidden units, the visible units were updated
in a random order.

To estimate the unnormalized log-probability of each data point with respect to the smaller
models, we used 200 samples from the proposal distribution of our estimator for the two-layer, and
500 samples for the three-layer model. For the larger model we used 2000 samples, although less
would have been sufficient.

For the fine-tuning of the smaller models with the wake-sleep algorithm, we reduced the learning
rates to1

4 of the original learning rates. Using larger learning rates led to a decrease in performance.
We used the same hyperparameters for the DBN representing the proposal distribution. We trained
the models for 100 epochs. Training the models for 200 epochs led to no further improvements.
We controlled for the estimator’s bias by testing the estimators behavior on a smaller test set for
different numbers of proposal samples. We used 4000 samples from theproposal distribution of
our estimator to estimate the log-likelihood. Using only 500 samples led to essentially the same
results, but the small difference in performance between the two-layer and three-layer model was
less visible.

To estimate the unnormalized hidden marginals of SRBMs, we used 100 proposal samples from
an approximating RBM with the same hidden-to-visible connections and same biasweights.

Lastly, note that the performance of the GRBM and the DBN might still be improved by taking a
larger number of hidden units. A post-hoc analysis revealed that the GRBMdoes indeed not overfit
but continues to improve its performance if the variance is decreased while increasing the number
of hidden units. This is of course also true for the other models we evaluated, whose performance
can still be improved if we allow them to use more parameters.

Code for training and evaluating deep belief networks using our estimator can be found under

http://www.bethgelab.org/code/theis2011/.

References

M. Bethge and R. Hosseini. Method and device for image compression. Patent WO/2009/146933,
2007.

S. S. Chen and R. A. Gopinath. Gaussianization.Advances in Neural Information Processing
Systems 13, 2001.

P. Comon. Independent component analysis, a new concept?Signal processing, 36(3):287–314,
1994.

J. Eichhorn, F. Sinz, and M. Bethge. Natural image coding in V1: How muchuse is orientation
selectivity?PLoS Computational Biology, 5(4), 2009.

D. J. Felleman and D. C. van Essen. Distributed hierarchical processingin the primate cerebral
cortex.Cerebral Cortex, 1991.

3093

THEIS, GERWINN, SINZ AND BETHGE

K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position.Biological Cybernetics, 1980.

J. A. Guerrero-Colon, E. P. Simoncelli, and J. Portilla. Image denoising using mixtures of gaussian
scale mixtures.Proceedings of the 15th IEEE International Conference on Image Processing,
2008.

M. Gutmann and A. Hyv̈arinen. Noise-contrastive estimation: A new estimation principle for un-
normalized statistical models.Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics, 2010.

G. E. Hinton. Training products of experts by minimizing contrastive divergence.Neural Compu-
tation, 14(8):1771–1800, 2002.

G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313:504–507, Jan 2006.

G. E. Hinton, P. Dayan, B. Frey, and R. Neal. The ”wake-sleep” algorithm for unsupervised neural
networks.Science, Jan 1995.

G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18(7):1527–1554, Jul 2006.

R. Hosseini and M. Bethge. Hierachical models of natural images.Frontiers in Computational
Neuroscience, 2009.

Y. Karklin and M. S. Lewicki. Emergence of complex cell properties by learning to generalize in
natural scenes.Nature, 2009.

A. Kong, J. S. Liu, and W. H. Wong. Sequential imputations and bayesian missing data problems.
Journal of the American Statistical Association, 89(425):278–288, 1994.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition.Neural Computation, 1989.

H. Lee and A. Ng. Sparse deep belief net model for visual area v2.Advances in Neural Information
Processing Systems 19, 2007.

P. Long and R. Servedio. Restricted boltzmann machines are hard to approximately evaluate or
simulate.Proceedings of the 27th International Conference on Machine Learning, 2010.

D. J. C. MacKay.Information Theory, Inference, and Learning Algorithms. Cambridge University
Press, 2003.

T. Minka. Divergence measures and message passing.Microsoft Research Technical Report (MSR-
TR-2005-173), 2005.

A. Mohamed, G. Dahl, and G. E. Hinton. Deep belief networks for phone recognition. NIPS 22
workshop on deep learning for speech recognition, 2009.

3094

IN ALL L IKELIHOOD , DEEPBELIEF IS NOT ENOUGH

I. Murray and R. Salakhutdinov. Evaluating probabilities under high-dimensional latent variable
models.Advances in Neural Information Processing Systems 21, 2009.

R. M. Neal. Annealed importance sampling.Statistics and Computing, 11(2):125–139, Jan 2001.

J. Ngiam, Z. Chen, P. Koh, and A. Y. Ng. Learning deep energy models.Proceedings of the 28th
International Conference on Machine Learning, 2011.

S. Osindero and G. E. Hinton. Modeling image patches with a directed hierarchy of markov random
fields. Advances in Neural Information Processing Systems 20, 2008.

M. Ranzato and G. E. Hinton. Modeling pixel means and covariances usingfactorized third-order
boltzmann machines.IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8,
May 2010.

M. Ranzato, A. Krizhevsky, and G. E. Hinton. Factored 3-way restricted boltzmann machines
for modeling natural images.Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics, 2010a.

M. A. Ranzato, V. Mnih, and G. E. Hinton. Generating more realistic images using gated mrfs.
Advances in Neural Information Processing Systems 23, 2010b.

M. A. Ranzato, J. Susskind, V. Mnih, and G. E. Hinton. On deep generative models with applications
to recognition.IEEE Conference on Computer Vision and Pattern Recognition, 2011.

N. Le Roux and Y. Bengio. Representational power of restricted boltzmann machines and deep
belief networks.Neural Computation, 20(6):1631–1649, 2008.

N. Le Roux, N. Heess, J. Shotton, and J. Winn. Learning a generativemodel of images by factoring
appearance and shape.Microsoft Research Technical Report (MSR-TR-2010-7), 2010.

R. Salakhutdinov.Learning Deep Generative Models. PhD thesis, Dept. of Computer Science,
University of Toronto, Sep 2009.

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks.Proceedings
of the 25th International Conference on Machine Learning, 25, Apr 2008.

O. G. Selfridge. Pandemonium: A paradigm for learning.Mechanisation of thought processes:
Proceedings of a symposium held at the National Physical Laboratory, pages 115–122, 1958.

P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory.Par-
allel Distributed Processing: Explorations in the Microstructure of Cognition, 1:194–281, Jan
1986.

J. Sohl-Dickstein, P. Battaglino, and M. R. DeWeese. Minimum probability flowlearning.pre-print,
2009. arXiv:0906.4779.

J. M. Susskind, G. E. Hinton, J. R. Movellan, and A. K. Anderson. Generating facial expressions
with deep belief nets.Affective Computing, Emotion Modelling, Synthesis and Recognition, pages
421–440, 2008.

3095

THEIS, GERWINN, SINZ AND BETHGE

I. Sutskever and G. E. Hinton. Deep, narrow sigmoid belief networks areuniversal approximators.
Neural Computation, 20(11):2629–2636, Nov 2008.

G. W. Taylor, G. E. Hinton, and S. Roweis. Modeling human motion using binary latent variables.
Advances in Neural Information Processing Systems 19, 2007.

T. Tieleman. Training restricted boltzmann machines using approximations to the likelihood gradi-
ent. Proceedings of the 25th International Conference on Machine Learning, 2008.

J. H. van Hateren and A. van der Schaaf. Independent component filters of natural images com-
pared with simple cells in primary visual cortex.Proceedings of the Royal Society B: Biological
Sciences, 265(1394), Mar 1998.

M. Welling and G. E. Hinton. A new learning algorithm for mean field boltzmann machines.Inter-
national Joint Conference on Neural Networks, 2002.

M. Welling, M. Rosen-Zvi, and G. E. Hinton. Exponential family harmoniums withan application
to information retrieval.Advances in Neural Information Processing Systems 17, 2005.

L. Younes. Parametric inference for imperfectly observed gibbsian fields. Probability Theory and
Related Fields, 1989.

3096

