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Abstract

Statistical models of natural images provide an importaal for researchers in the fields of ma-
chine learning and computational neuroscience. The caabnieasure to quantitatively assess
and compare the performance of statistical models is giyethé likelihood. One class of statis-
tical models which has recently gained increasing popylarnd has been applied to a variety of
complex data is formed by deep belief networks. Analysesie$e models, however, have often
been limited to qualitative analyses based on samples dhe mmputationally intractable nature
of their likelihood. Motivated by these circumstances, pinesent article introduces a consistent
estimator for the likelihood of deep belief networks whisttomputationally tractable and simple
to apply in practice. Using this estimator, we quantitdyiviavestigate a deep belief network for
natural image patches and compare its performance to thapance of other models for natural
image patches. We find that the deep belief network is owdpadd with respect to the likelihood
even by very simple mixture models.

Keywords: deep belief network, restricted Boltzmann machine, Ih@tid estimation, natural
image statistics, potential log-likelihood

1. Introduction

When dealing with natural images, the choice of image representation is afizaldor achieving
a good performance. Good generative models or classifiers, for éxaoam be easier to realize
in terms of more complex features such as edges than in terms of raw pixdifigen Several
facts point to the advantage of using hierarchical representationad¢odmg natural images over
non-hierarchical ones. Multiple layers of representations allow for fgeofi simpler transforma-
tions, each solving only a subproblem, as well as for a more efficient imptat@nby enabling
the reuse of low-level features in the realization of higher-level featuFarther motivation for
hierarchical representations comes from the hierarchical organizattitire brain (Felleman and
van Essen, 1991) and the hierarchical organization of the concaptaisding us. The idea of
using hierarchical image representations in supervised as well asamisag tasks is now several
decades old (e.qg., Selfridge, 1958; Fukushima, 1980; LeCun et af@).198wever, only the emer-
gence of recent training methods has made them competitive across manyisegblearning tasks
and led to a renewed surge of interest in hierarchical image represastabespite this success
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in supervised tasks, no probabilistic model has been conclusively stooexhibit state-of-the-art
performance as generativemodel and at the same time benefit strongly from hierarchical image
representations.

The most prominent example of the recent research in hierarchical imadginwis the re-
search into a class of hierarchical generative models cdbeg belief networksDeep belief net-
works were introduced by Hinton and Salakhutdinov (2006); Hinton §2806) together with a
greedy learning rule as an approach to the long-standing challengaofgrdeepneural networks,
that is, hierarchical neural networks such as multi-layer perceptimes.existence of an efficient
learning rule has made them become attractive not only for pretraining multipayeeptrons, but
also for density estimation and other inherently unsupervised learning tasksipervised tasks,
they have been shown to learn representations which outperform merpetiag representations
when employed, for example, in character recognition (Hinton et al., 200§)eech recognition
(Mohamed et al., 2009). In unsupervised tasks, they have been apipkedide variety of com-
plex data sets such as patches of natural images (Osindero and Hiri8nR2hzato et al., 2010a;
Ranzato and Hinton, 2010; Lee and Ng, 2007), motion capture recar{liaglor et al., 2007) and
images of faces (Susskind et al., 2008). When applied to natural imaggsbélief networks have
been shown to develop biologically plausible features (Lee and Ng, 20G¥amples from the
model were shown to adhere to certain statistical regularities also foundurahemages (Osin-
dero and Hinton, 2008). Examples of natural image patches and feldaraed by a deep belief
network are presented in Figure 1.

An important measure to assess the generative performance of aifistibabodel is the like-
lihood. The likelihood allows us to objectively compare the density estimatioroqeaice of
different models. Given two model instances with equal a priori probafditigyratio of their likeli-
hoods with respect to a set of data samples tells us everything we needatackdecide which of
the two models is more likely to have generated the data set. Further motivatioe iiketihood
stems from coding theory. For densitigandq, the negative expected log-likelihood represents the
cross-entropyerm of the Kullback-Leibler (KL) divergence,

Dre [P(x)]a(x) Z p(x)logq(x) —H[p(x)],

which is always non-negative and zero if and onlypifand g are identical. The cross-entropy
represents the coding cost of encoding samples drawn frawith a code that would be optimal for
samples drawn fromy. Correspondingly, the KL-divergence represents the additionahganbst
created by using an optimal code which assumes the distribution of the sampleg itostead of
p.

The expected negative log-likelihood, or cross-entropy, quantifiegrti@unt of correlations
captured by a statistical model. A model with a minimal cross-entropy wouldastt ile principle,
be able to predict missing information from partially observed input in an optinaaner. In this
sense, the likelihood can be understood as a measure of scene urdiegsiba model is applied
to natural scenes.

Finally, the likelihood allows us to directly examine the success of training whedimma
likelihood learning is employed. Even when the ultimate goal is classificatiop, mEef networks
and related unsupervised feature learning approaches are optimizesygttt to the likelihood.
Evaluating the likelihood is therefore also important to assess the succpsstr@ining and for
fine-tuning hyperparameters. Unfortunately, the likelihood of deep bedégforks is in general
computationally intractable to evaluate.

3072



IN ALL LIKELIHOOD, DEEPBELIEF IS NOT ENOUGH

Figure 1: Left: Natural image patches sampled from the van Hateren dataset (van Hatelen
van der Schaaf, 1998Right: Filters learned by a deep belief network trained on whitened
image patches.

In this article, we set out to test the performance of a deep belief netwodvdiluating its
likelihood. After reviewing the relevant aspects of deep belief netwosleswill derive a new
consistent estimator for their likelihood and demonstrate the estimator’s aplljcatbpractice.
We will investigate a particular deep belief network’s capability to model the statisegularities
found in natural image patches. We will show that the deep belief netwatkrustudy is not
particularly good at capturing the statistics of natural image patches as itgerfarmed with
respect to the likelihood even by very simple mixture models. We will furthersiooey that adding
layers to the network has only a small effect on the overall performdribe enodel if the first layer
is trained well enough and offer possible explanations for this obsemagi@nalyzing a best-case
scenario of the greedy learning procedure commonly used for traingy ludief networks.

2. Models

In this section we will review the statistical models used in the remainder of thigeaatid discuss
some of their properties relevant for estimating the likelihood of deep beligfonkes (DBNs).
Throughout this section, the goal of applying statistical models is assumedhe lpproximation
of a particular distribution of interest, thiata distribution We will denote this distribution byp.”™

2.1 Boltzmann Machines

A Boltzmann machiné a potentially fully connectedindirected graphical modekith binary
random variables. Its probability mass function is a Boltzmann distribution @vbmary states
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A) B) ©

Figure 2: Boltzmann machines with different constraints on their connecthiitgd nodes denote
visible variables, unfilled nodes denote hidden variabde s\ fully connected Boltzmann
machine.B: A restricted Boltzmann machin€: A semi-restricted Boltzmann machine,
which in contrast to RBMs also allows connections between the visible units.

se {0,1}¥ which is defined in terms of agnergy function E
1
(s = ZexA-E(s). 2=y expl~E(s)).
whereE is given by

1 1
E(s)=—5 TWs—b's= —5 > SWijsj — ) sby
] T

and depends on a symmetric weight mathixe R**¥ with zeros on the diagonaly; = 0 for all
i =1,...,k, and bias termb € RX. Z is calledpartition functionand ensures the normalizationapf
In the following, unnormalized distributions will be marked with an asterisk:

q'(s) = Zq(s) = exp(—E(s)).

Of particular interest for building DBNs atatent variable Boltzmann machindkat is, Boltzmann
machines for which the statessare only partially observed (Figure 2). We will refer to states of
observed or visible random variablesxeand to states of unobserved or hidden random variables as
y, such thas = (x,y).

Maximum likelihood (ML) learning can be implemented by following the gradiertheflog-
likelihood. In Boltzmann machines, this gradient is conceptually simple yet catigoally hard
to evaluate. The gradient of the expected log-likelihood with respect to panaenete® of the
energy function is (e.g., Salakhutdinov, 2009):

0 0 0
Ep) [69 |09Q(X)] = Eqixy) [GGE(X’W] —Epxqyix) [GGE(X’W} : (1)

The first term on the right-hand side of this equation is the expected gtadigre energy function
when both hidden and visible states are sampled from the model, while thedsieconis the
expected gradient of the energy function when the hidden states ave h@m the conditional
distribution of the model, given a visible state drawn from the data distribupict), ~
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Evaluating these expectations, however, is computationally intractable foutathe simplest
models. Even approximating the expectations with Monte Carlo methods is typicaylyshosv
(Long and Servedio, 2010). Two measures can be taken to make learogizmann machines
feasible: constraining the Boltzmann machine in some way, or replacing the digdlikith a sim-
pler objective function. The latter approach led to the introduction of thérastive divergence
(CD) learning rule (Hinton, 2002) which represents a tractable appréximeo ML learning: In
CD learning, the expectation over the model distributitx y) is replaced by an expectation over

dep(%Y) = > B(xo)d(yz [ xo)a(x | ya)aly | x),
X0,Y1

from which samples are obtained by taking a samgléom the data distribution, updating the
hidden units, updating the visible units, and finally updating the hidden units,aghile in each
step keeping the respective set of other variables fixed. This comdspo a single sweep of Gibbs
sampling through all random variables of the model plus an additional up@i#tte hidden units.
If insteadn sweeps of Gibbs sampling are used, the learning procedure is genefaltyed to as
CD(n) learning. In the limit of larg®, ML learning is regained (Salakhutdinov, 2009). An improved
sampling scheme is offered Ipgrsistent contrastive divergen@@@CD), in which the Markov chain
is initialized not with a sample from the data distribution, but with the state of the dtarkain at
the previous update of the gradient (Younes, 1989; Tieleman, 2008).

2.2 Restricted Boltzmann M achines

The first expectation on the right-hand side of Equation 1 can be madetiealiyytractable by
constraining the energy function such that no direct interaction betwenisible units or two
hidden units is possible (Smolensky, 1986; Hinton, 2002),

E(x,y) = —x Wy—b'x—c'y.

Such a model is called a restricted Boltzmann machine (RBM). The corréisigograph has no
connections between the visible units and no connections between the hidider{Figure 2).
Importantly, the unnormalized marginal distributiayi$x) andqg*(y) can now be computed analyti-
cally by integrating out the respective other set of variables. The umadized marginal distribution
of the visible units becomes

q°(x) = exp(b"x) [] (1 +exp(w] x+cj)). )
j
Two related models also used in this article are @aussian RBMGRBM) (Salakhutdinov,
2009) and thesemi-restricted Boltzmann machif8RBM) (Osindero and Hinton, 2008). The
GRBM employs continuous visible units and binary hidden units and can thusdiketo model
continuous data. Its energy function is given by

1 1
E(x,y) = @HX_ bHZ - EXTWY— c'y.

A somewhat more general definition allows a differefior each individual visible unit (Salakhutdi-
nov, 2009). The conditional distributiar{x | y) of a GRBM is a multivariate Gaussian distribution,

a(x | y) = AL(x;0Wy+b,0?l).
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Each binary state of the hidden units encodes one mean, whilentrols the variance of each
Gaussian and is the same for all hidden units. The GRBM can thereforéeherated as a mixture
of an exponential number of Gaussian distributions with fixed, isotropiar@@vce and parameter
sharing constraints.

In an SRBM, only the hidden units are constrained to have no direct cbang to each other
while the visible units are unconstrained (Figure 2). Analytic expressiantharefore only avail-
able forg*(x) but not forg*(y) and the visible units are no longer independent given a state for the
hidden units.

2.3 Deep Belief Networks

Figure 3: A graphical model representation of a two-layer deep beligfank composed of two
RBMs. The connections of the first layer are directed.

DBNs (Hinton and Salakhutdinov, 2006) are hierarchical generativdetaa@omposed of sev-
eral layers of RBMs or one of their generalizations. §ét,y) andr(y,z) be the densities of two
RBMs over visible states and hidden stategsandz. Then the joint probability mass function of a
two-layer DBN is defined to be

P(X,Y,2) = a(X| Y)r(y,2).

The resulting model is best described not as a deep Boltzmann maching dgtraphical model
with undirected connections betwegandz and directed connections betweeandy (Figure 3).
This definition can be recursively extended to DBNs with three or moredayereplacing (y, z)
with another DBN. DBNs with an arbitrary number of layers have been shiowbe universal
approximators even if the number of hidden units in each layer is fixed to tmbewof visible
units (Sutskever and Hinton, 2008). DBNs are easily generalized byiajawore general models
as layers, such as the GRBM and the SRBM.

The learning procedure introduced by Hinton et al. (2006) for trainiBiN® makes two ap-
proximations to ML learning. The first approximation is made by training the DBH greedy
manner: After the first layer of the model has been trained to approximatathelistribution, its
parameters are fixed and only the parameters of the second layer are egtith&is a parameter
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of the second-layer density the gradient of the DBN’s log-likelihood with respect@as
d
38/09P() Zpylx Iogr() 3)

However, exact sampling from the posterior distributjmy | x) is difficult. In order to make the
training feasible, the posterior distribution is replaced by the factorial digtoibq(y | X). Training
the DBN in this manner optimizes a variational lower bound on the log-likelihoadtgH et al.,
2006),

S a(y | x)logr (y) < logp(x) + const (4)
y

whereconstis constant ir, which is a parameter af Taking the derivative of the left-hand side of
Equation 4 with respect t@ yields (3) with the posterior distributiop(y | X) replaced byq(y | x).
The greedy learning procedure can be generalized to more layerdrigdraach additional layer
to approximate the distribution obtained by conditionally sampling from each iayem, starting
with the lowest layer.

After finishing the greedy training, Hinton et al. (2006) suggested to wsedke-sleep algo-
rithm (Hinton et al., 1995) to fine-tune the parameters. Like the greedy algoritlenydke-sleep
algorithm optimizes a lower bound on the log-likelihood of the model, but in centgatimizes all
parameters concurrently. In addition, a separate set of RBMs is usleaidapted to more closely
approximate the DBN's posterior distribution over hidden units.

3. Likelihood Estimation

In this section, we will discuss the problem of estimating the likelihood of a twerl®BN with
joint density

p(X7 Y, Z) - q(X ’ y>r(y7 Z)' (5)

That is, for a given visible state to estimate the value of

= qx|Y)r(%.2).
V.Z

We will later generalize this problem to more layers. As befaye,y) andr(y,z) refer to the
densities of two RBMs.

Two difficulties arise when dealing with this problem in the context of DBNs.stFify, z)
depends on a partition functiadh whose exact evaluation requires integration over an exponential
number of states. Second, despite being able to integrate analytically, mxem computing just
the unnormalized likelihood still requires integration over an exponential rupfthidden stateg

= > ax|yr
y
After briefly reviewing previous approaches to resolving these difficyltiee will propose an un-

biased estimator fop*(x), its contribution being a possible solution to the second problem, and
discuss how to construct a consistent estimatopfay based on this result.
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3.1 Importance Sampling

Since our estimator relies on importance sampling, we briefly review it hereortarre sampling
is a Monte Carlo integration method for unbiased estimation of expectation¥&@ya2003) and
is based on the following observation: Lsthe a density witts(x) > 0 wheneveiy*(x) > 0 and let

w(X) = %%), then

for any functionf. sis called gproposal distributiorfor g andw(x) is calledimportance weightlf
f(x) = 1 for all x, we get

=Zq. (6)

Estimates of the partition functiody can therefore be obtained by drawing sampl@s from a
proposal distribution and averaging the resulting importance weight®)). It was pointed out
in Minka (2005) that minimizing the variance of the importance sampling estimate pfttigion
function (6) is equivalent to minimizing am-divergencé between the proposal distributisrand
the true distributiorg. Therefore, for an estimator to work well in practissshould be both close
to g and easy to sample from.

3.2 Previous Work

The following is a brief summary of existing approaches to approximating thighidasl of RBMs
and DBNs.

3.2.1 ANNEALED IMPORTANCE SAMPLING

Salakhutdinov and Murray (2008) have shown hamnealed importance samplif@IS) (Neal,
2001) can be used to estimate the partition function of an RBM. AIS tries torsuent some of
the problems associated with finding a suitable proposal distribution. Faquesee of proposal
distributionssy, ..., s, and corresponding transition operatdys..., T,, one can show that

Zg= 3 $0%-1) T 10602 %-1) -+~ Ta (X0 %) Siji:nj) g((zg)) ’

where the sum integrates ovena# (xo, ...,X,—1). Hence, in order to estimate the partition function,
we can draw independent sampigs; from a simple distributiors,, use the transition operators
to generate samples_», ..., Xp from increasingly complex distributions, and average the resulting
product of fractions given in the preceding equation. For details ontb@lioose the intermediate
distributions and transition operators, see Salakhutdinov and Murr@g)20

1. Witha = 2. a-divergences are a generalization of the KL-divergence.
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3.2.2 ESTIMATING LOWERBOUNDS

In Salakhutdinov and Murray (2008) it was also shown how estimates ofver Ibound on the
log-likelihood,

log p(x) aly [ x) Iogr*(y) ,( )‘ Y) —logz; (7
ay [ x)logr*(y)a(x|y) + H[a(y | x)] —logZ, (8)

e
3

can be obtained, provided the partition functignis given. This is the same lower bound as the
one optimized during greedy learning (4). Sirgg | X) is factorial, the entropy[q(y | X)] can

be computed analytically. The only term which still needs to be estimated is theefirsion the
right-hand side of Equation 8. This was achieved in Salakhutdinov andayl(2008) by averaging
over samples drawn fromy | x).

3.2.3 GONSISTENTESTIMATES

In Murray and Salakhutdinov (2009), a rather elaborate sampling schaméevised to give un-
biased estimates for the inverse posterior probabﬁ% of some fixed hidden statg These
estimates were then used to get unbiased estimag$xfby taking advantage of the fapt(x) =
‘g((;‘%). The corresponding partition function was estimated using AlS, givingteigseconsistent
estimator. While the estimator’'s Markov chain was constructed such thataaitpighort runs of
the Markov chain result in unbiased estimategt(fx), even a single step of the Markov chain is
slow compared to sampling frogty | x), as it was done for the estimation of the lower bound (7).

3.3 A New Estimator for DBNs

The estimator we will introduce in this section shares the same formal propastibe estimator
proposed in Murray and Salakhutdinov (2009), but will use samplegrdiiam q(y | x). This will
make it conceptually as simple and as easy to apply in practice as the estimalerlwer bound
(7), while providing us with consistent estimatespgk).

Let p(x,Y,z) be the joint density of a DBN as defined in Equation 5. By applying Bayes’
theorem, we obtain

p(X) =S a(x|y)r(y)

(9)

A natural choice for an estimator @fx) is therefore

g(x) ry")

1
= N2 g
1y
ZN £ g (y)

(10)

=q°(x)
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wherey™ ~ q(y(™ | x) forn=1,...,N. For RBMs, the unnormalized marginas(x),q*(y) and
r*(y) can be computed analytically (2). Also note that the partition funcioonly has to be
calculated once for all visible states we wish to evaluate. We are not aWware/ avork which
tried to use this estimator to estimate the likelihood of DBNSs. In the following, we witidis and
investigate its properties.

Under the assumption that the partition functigns known, p(x) provides an unbiased esti-
mate ofp(x) since the sample average is always an unbiased estimate of the expectati@vek
Z: is generally intractable to compute exactly so that approximations becomeascdsin the es-
timate (10) the partition functiod, is replaced by an unbiased estimztethen the overall estimate
will tend to overestimate the true likelihood,

e| ) —e| 3] o)

wherepy(X) = Z; pn(X) is an unbiased estimate of the unnormalized density. The second step is a
consequence of Jensen'’s inequality and the averages are takenspibtreopy (X) andZ,, which
are independenk is held fix.
While the estimator loses its unbiasedness for unbiased estimates of the pautititiorf, it
still retains its consistency. Sing®, (X) is unbiased for alN € N, it is also asymptotically unbiased,
plim B () = p*(x).
N—o0
Furthermore, iTZnN for N € N is a consistent sequence of estimators for the partition function, it
follows that

. lim Py (X
plim NGO i pT( ) P p(X).
N— o0 Zr7N leerﬂN Zl’
N—o0

Unbiased and consistent estimatesZpfcan be obtained using AIS (Salakhutdinov and Murray,
2008). Note that although the estimator tends to overestimate the true likelihoxpkiciation and
is unbiased in the limit, it is still possible for it to underestimate the true likelihood nidlsedime.
This behavior can occur if the distribution of estimates is heavily skewed.

An important question which remains is whether the estimator is also good in testadisfical
efficiency. The more efficient an estimator, the less samples are requbthio reliable estimates
of the likelihood. If we cast Equation 9 into the form of Equation 6, we seedhaestimator per-
forms importance sampling with proposal distributigily | X) and target distributiop(y | x), where
p(x) can be seen as the partition function of an unnormalized distribyiryy). As mentioned
earlier, the efficiency of importance sampling estimates of partition functigmesnadis on how well
the proposal distribution approximates the true distribution. Thereforéhéoproposed estimator
to work well in practiceq(y | x) should be close tp(y | x). Note that a similar assumption is made
when optimizing the variational lower bound during greedy learning. Theddeund (4) can be
shown to be equal to

> d(y [x)logr(y) = logp(x) — DkL(q(y [ X)||p(y | X)) +const (11)
y
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Estimatep(Xo)

1: P+ g;(Xo)
:forl=1toL—-1do
X ~aq(x|X-1)

2

3
PPy
5

6

: end for
. return p/Z.

Figure 4: Pseudocode for generating an unbiased estipaft¢hé probablity ofxy under a DBN
with L layers. Layet here has unnormalized densiy. Note that in practice, an average
over multiple such estimates will generally be taken. Also notezhatill typically have
to be estimated as well.

where agairconstis constant in the parametersrof Training the DBN by optimizing the above
lower bound therefore minimizes the KL-divergence between the truerfmystiad the approximat-
ing posterior, thereby making it a better proposal distribution. We will furttulelress the question
of statistical efficiency empirically in the experimental section.

The definition of the estimator for two-layer DBNs readily extends to DBNs wWithyers.
If p(x) is the marginal density of a DBN whose layers are RBMs with densifi¢xy,x1), ...,
gL(X.—1,%.) and partition function&y, ...,Z;, and if we refer to the states of the random vectors
in each layer by, ..., X, wherexg contains the visible states ard contains the states of the top
hidden layer, then

L-1
p(xo) = % aq(X-1,%) I|_!C1|(X|71|X|)
X1,.00, XL =

_ P q (X-1)
—Xl,;XHQL(XL—l) ||1q| (X [x-1) 700

ey L P Oi1(%)
= 1 (%o) 7 Z ﬂ a(x | xl_l)—ql* )

In order to estimate this term, hidden statgs..,x, 1 are generated in a feed-forward manner using

the conditional distributions) (X | x—1). The weightsqgﬁiy are computed along the way, then

multiplied together and finally averaged over all drawn states. Intuitivelyestienation process
can be imagined as first assigning a basic value using the first layer anddtrecting this value

based on how the densities of each pair of consecutive layers relatehoier. Pseudocode for
this procedure is given in Figure 4.

3.4 Potential Log-Likelihood

In this section, we will discuss a concept which appears in Roux andi®€é2g08) and which
we will dub thepotential log-likelihood By considering a best-case scenario, the potential log-
likelihood can give us an idea of the log-likelihood that can at best be\ahlgy training additional

3081



THEIS, GERWINN, SINZ AND BETHGE

log-likelihood
= Jower bound

configuration of second layer

Figure 5: A cartoon explaining the potential log-likelihood. For each chinicéhe second layer
of a DBN, we obtain a different value for the log-likelihood and its lowertmhuFrom
all possible choices, we take the distribution which maximizes the lower boyrah(l
compute its log-likelihood (2). We call this particular log-likelihood thetential log-
likelihood It is still possible that the log-likelihood is larger for other distributions (3).
However, it is unlikely that such a distribution will be found, as the secoyef s opti-
mized with respect to the lower bound.

layers using the greedy learning of Hinton and Salakhutdinov (2006us#fulness will become
apparent in the experimental section.

Let q(x,y) be the distribution of an already trained RBM or one of its generalizatioms|edn
r(y) be a second distribution—not necessarily the marginal distribution of atligrBann machine.
As in section 2.3r(y) serves to replace the prior distribution over the hidden variablg$, and
to thereby improve the marginal distribution overy, q(x|y)r(y). As above, lefp(x) denote the
data distribution. Our goal is to increase the expected log-likelihood of thelhdistribution with

respect ta,

> B Iong (X[ y)r(y)- (12)

X

In applying the greedy learning procedure, we try to reach this gogbtiynzing a lower bound on
the log-likelihood (4), or equivalently, by minimizing the following KL-diveryze:

Dw | D BO)aly [ ¥)[Ir(y) Zp zq(yIX)logr(yHconst

X

whereconstis constant irr.
The KL divergence is minimal if(y) is equal to

Zp q(y | x) (13)
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for everyy. Since RBMs are universal approximators (Roux and Bengio, 2@08)distribution
could in principle be approximated arbitrarily well by a single, potentially verydd&BM. Assume
therefore that we have found this distribution, that is, we have maximized wes lmound with
respect to all possible distributioms Then, the distribution for the DBN which we obtain by
replacingr in (12) with (13) is given by

ZqX\y Zp a(y [ %o)

3 B0a) 3 x| y)aly| 0

Xo
= P(X0)do(X| X0),
Xo

where we have used thleconstruction distribution

Go(X | %0) = a(x|y)a(y| o),
y

which can be sampled from by conditionally sampling a state for the hidden umitshan, given
the state of the hidden units, conditionally samplingeonstructiorof the visible units. The log-
likelihood we achieve with this lower-bound optimal distribution is given by

> B(x |OQZI0 )Go(X | Xo).
X

We will refer to this log-likelihood as theotential log-likelihood Note that the potential log-
likelihood is not a true upper bound on the log-likelihood that can be adhieith greedy learn-
ing, as suboptimal solutions with respect to the lower bound might still givetoisegher log-
likelihoods. However, if such a solution was found, it would have bet#rerdy accident than by
design. The situation is depicted in the cartoon in Figure 5.

4. Experiments

We performed two types of experiments. In the first, we tested the perfoemmdraur estimator.
In the second, we further investigated the capabilities of a DBN architegtapwsed by Osindero
and Hinton (2008) as a model for natural images. The model consists BBMGn the first layer
and SRBMs in the subsequent layers.

For all but the topmost layer, our estimator requires evaluation of the oratiaed marginal
density over hidden states (see Figure 4). In an SRBM, however, atirggjout the visible states is
analytically intractable. Fortunately, an RBM with the same hidden-to-visiblaaexiions and the
same bias weights but without the lateral connections turned out to be @argfénough proposal
distribution. We estimated the unnormalized SRBM marginals using

- S = Sty G~ oS S0

whereq is the density of an RBM which approximates the density of the SR@M,

4.1 Testingthe Estimator

As a first test, we considered a three-layer model for which the likelihootlligractable. It em-
ployed 15 hidden units in each of the first two layers, 50 hidden units in thet ldorer and was
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layers| true neg. log-likelihood est. neg. log-likelihood
1 2.0482569 2.0484440
2 2.0478912 2.0477577
3 2.0478672 2.0474685

Table 1: True and estimated negative log-likelihood in bits per componentro&th BBN trained
on 4 by 4 image patches. The estimated likelihood closely matches the true likelihood
Adding more layers to the network did not help to improve the performance &REBM
employed only few hidden units.

trained on 4 by 4 pixel image patches taken from the van Hateren image t&tarsélateren and
van der Schaaf, 1998). The image patches were preprocessedaustimmgdard battery of prepro-
cessing steps including a log-transformation, a centering step and a whistam Additionally,
the DC component was projected out and only the remaining 15 componerdastopatch were
used for training (for a more detailed description of the preprocesseagEichhorn et al., 2009).
Brute-force and estimated results are given in Table 1.

We also compared results obtained with our estimator applied to larger modesutts iab-
tained by Murray and Salakhutdinov (2009). Using the same prepiingesisthe image patches
and the same hyperparameters as in Murray and Salakhutdinov (2@0®3jimed a two-layer model
with 2000 hidden units in the first layer and 500 hidden units in the secondday20 by 20 pixel
van Hateren image patches. In contrast to the preprocessing of the smallgr patches, the DC
component was not removed. We used 150000 patches for trainingd@00 patches for testing
and obtained a negative log-likelihood of 2.047 bits per component on thedagscompared to
2.032 bits reported by Murray and Salakhutdinov (2009).

We further evaluated a two-layer model with 500 hidden units in the first 8868 Ridden units
in the second layer trained on a binarized version of the MNIST data setth&dirst layer we
took the parameters from Salakhutdinov (2009), which were availableeonlle then tried to
match the training of the second-layer RBM with 2000 hidden units using themiatgon given in
Salakhutdinov (2009) and Murray and Salakhutdinov (2009). Evalydtie model on the whole
test set, we obtained a result of 0.357 bits per component compared tdisS&ported by Murray
and Salakhutdinov (2009).

We measured the statistical efficiency of our estimator in terms aftbetive sample si{&SS)
(Kong et al., 1994). FON samples, target densityand proposal density, the ESS is defined to be

N N

1+ Varq(y) [%} ~ 1+ D2[p(y)lla(y)]

D, is thea-divergence witho = 2 and is also known as the-divergence. In our case, the target
distribution is the conditional distribution over the hidden states of a DBN gavstate for the
visible units. If p equalsq, then the variance of the importance weights is zero, so that a single
sample from the posterior would suffice to get a perfect estimate of thematined probability of
any data point. In that case, the ESS would\be

Note that the success of training DBNs is also influenced by the ESS. Tteasgiof the lower
bound optimized during training depends on the goodness of the sameiapgtion, although it is
measured in terms of the KL-divergence rather tharxthdivergence (see Equation 11).
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Figure 6: Left: Distributions of relative effective sample sizes (ESS) for two-layer DBiREk
lines) and three-layer DBNs (thin lines) trained on 4 by 4 pixel image patohieg
different training rules. The larger the ESS for a given data point, the riicient is
our estimator in determining its probabilitiRight: Ditributions of relative ESSs for two
two-layer models trained on 20 by 20 pixel image patches. Both models wigrectkaith
PCD but using different hyperparameters. While the GRBM yielded a hmdtésrmance
for smallero, it also caused the evaluation and the training of subsequent layers to be
more difficult.

Because the distributions we are interested in are conditional distributidob ate dependent
on the state of the visible units, we obtain a different ESS for each data pidiamnice, we get
a distribution over ESSs for each model (Figure 6). We found that thétyjoé the proposal
distribution was strongly dependent on the parameters of the model. Traiminglel on the larger
image patches using the same hyperparameters as used by Osinderotand24i68) and Murray
and Salakhutdinov (2009), for example, led to a distribution of ESSs whashsharply peaked
around 0.75. This made it easier to train subsequent layers and to evhkdieo-layer model.
Using a smaller value for the Gaussian noise, on the other hand, led to aliketiierood but also
a worse approximation to the posterior distribution. Consequently, gettingaeestimates of the
log-likelihood took longer (right plot in Figure 7).

On a single core of an AMD Opteron 6174 machine with 2.20 GHz and with an implaiien
written in Python, it took us about 10 minutes to get accurate results fortaQodints taken from
the MNIST data set. Murray and Salakhutdinov (2009) report that teeged about 50 minutes
on a Pentium Xeon 3.00 GHz to get stable results for 50 data points. Hqwefa@ircomparison of
computational efficiency is difficult, even when the comparison is performihdhe same machine
and the same programming framework is used. For the larger models trair@ lmn 20 van
Hateren image patches, it took us less than a second and up to a few minuetsdaspnably
accurate estimates for 50 samples (Figure 7). Note that even for the base the distribution of
ESSs is peaked around a value very close to zero, evaluating a largemafitraining samples was
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Figure 7: Left: The log-likelihood in bits per component was estimated for 50 test samples using
different numbers of proposal samples. The difference betwedneasiinate and the
most accurate estimate was then measured. The plots show the mean diffamdrits
standard deviation relative to the time it takes to compute the estimates. The bias in
the estimates is due to the logarithiRight: The same plot for a different model. The
time it takes to get accurate estimates depends on the parameters of the modeih&s
parameters obtained with the hyperparameters suggested in (Osindétimtorg 2008),
already a single sample yielded good estimates of the log-likelihood (abowgd@ds).

But even for the case where our estimator showed the least statisticerefficit only
took a few minutes to evaluate 50 samples on a single CPU.

more than feasible. To further reduce computation time, the evaluation dgnbeggarallelized by
splitting the test set into batches which are evaluated separately.

One likely reason for the efficiency of our estimator is the optimization of the rdwend
during training (see discussion around Equation 11). This means thatrifdbel is trained with a
different learning algorithm, it should become less efficient. We foundfiimtvas indeed the case
if models were further optimized using the wake-sleep algorithm (Figure 6).

4.2 Model Comparison

We compared the DBN’s performance to the performance of complete 1©AM¢G, 1994; Eich-
horn et al., 2009) as well as several mixture distributions. Perhapsstiosaterpretation to the
GRBM as well as to the DBN is the mixture of isotropic Gaussian distributions @Ylalith identi-
cal covariances and varying means. Recall that the GRBM can be itied@s a mixture of a very
large number of isotropic Gaussian distributions with weight sharing camtstré\fter the parame-
ters of the GRBM have been fixed, adding layers to the network only esahg prior distribution
over the Gaussians, but does not alter their means. Other models takendotmiare mixtures
of Gaussians with unconstrained covariance but zero mean (MoG) ataresof elliptically con-
toured distributions with zero mean (MoEC) (Bethge and Hosseini, 200Whizh a special case
is the more well-known mixture of Gaussian scale mixtures (e.g., Guerrdom&bal., 2008).
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Figure 8: A comparison of different models. For each model, the estimatgdive log-likelihood
in bits per data component is shown, averaged over 10 independentwitiaindepen-
dent training and test sets. For the GRBM and DBN trained on 20 by 20 inaghgs,
the performance obtained from a single trial is shown. The number behgidreodel
hints either at the number of hidden units or at the number of mixture compamseds
DBNs were trained using the greedy learning rule and fine-tuned usinggtke=sleep al-
gorithm. Boltzmann machines were trained with PCD. Larger values cordgpavorse
performance.

Using PCD, we trained a three-layer model with 100 hidden units per layireosmaller 4 by
4 image patches. As expected, both the GRBM and the DBN performed bettethih mixture of
isotropic Gaussians. Strikingly, however, the DBN was outperformed leye¢he mixture of Gaus-
sians with just two components. The overall results suggest that mixturdswaittefreely varying
covariance are better suited for modeling the statistics of natural images thamennodels with
constrained covariance (Figure 8), which is consistent with previossreations that having a flex-
ible model of the covariance structure is important (e.g., Karklin and Lew2€Ki9; Ranzato et al.,
2010a).

Adding a second layer to the network only helped very little and we foundthigabetter the
performance achieved by the GRBM, the smaller the improvement contribptetbequent layers.
For the hyperparameters that led to the best performance, adding a y@rdvéd no effect on the
likelihood and in some cases even led to a decrease in performance (iglites was despite the
apparently reasonable approximation to the posterior distribution over terhglates (Figure 6).
The hyperparameters were selected by performing separate grithegdoc the different layers
(for details, see Appendix A). PCD on average yielded a slightly wordfenmeance than CD(5) or
CD(10), indicating that the Markov chain used during training to sample trenmodel converged
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Figure 9: Left: Estimated performance of three DBN-100 models trained emd4van Hateren
image patches using the greedy learning rule. Each point represent&rage over
10 models trained on different training sets. Smaller values corresporedtes perfor-
mance. Error bars were too small to be visible and were therefore lefiTbet dashed
lines indicate the estimated negative potential log-likeliho®&ight: Performance af-
ter fine-tuning the model parameters with the two-layer and three-layer moiklthe
wake-sleep algorithm.

quickly to the true distribution. For other sets of hyperparameters we finat@dding a third layer
was still able to yield some improvement, but the overall performance of the-tayer model
achieved with these hyperparameters was worse.

We also trained a two-layer DBN with 500 hidden units in the first layer an® Bdden units
in the third layer on 20 by 20 pixel image patches. Using PCD instead of Cadd)a smaller
value foro led to a performance which is aboutl8 bits per pixel better than the performance
reported by Murray and Salakhutdinov (2009). However, the pedioce achieved by the model
was again worse than the performance achieved by other, simpler moddts.tAe smaller model,
the improvement in performance of the GRBM led to a smaller improvement gainadding a
second layer to the model. Despite the much larger second layer, thenpanize gain induced
by the second layer was even less than for the smaller models. Both patstesize the same
ordering of the models and resulted in an overall similar picture (Figure 8).

The improvement of the DBN over the GRBM trained with PCD is about 0.05 bitsqrapo-
nent for the smaller model and 0.01 bits for the larger model. An importantigngs why this
improvement is so small. Insight into this question can be gained by evaluatimpgptietial log-
likelihood, as it represents a practical limit to the performance which cachieved by means of
the approximate greedy learning procedure and could in principle bea¢edleven before train-
ing any additional layers. If the potential log-likelihood of a GRBM is close tdaislikelihood,
adding layers is a priori unlikely to prove useful. Unfortunately, exaatuation of the potential
log-likelihood is intractable, as it involves two nested integrals with respecttdata distribution,

| B10g [ Bo)do(x | x0)dxodx 14
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Figure 10: Estimated negative potential log-likelihood of the GRBM. Eachrpjatesents an av-
erage over 10 GRBMs trained on different training sets. Error barsételigne stan-
dard deviation. After 512000 samples to approximate the integrals of thetjpbteg-
likelihood, the estimates have still not converged, suggesting that the trertipblog-
likelihood is even worse.

Nevertheless, optimistic estimates of this quantity can still tell us something abddBti's capa-
bility to improve over the GRBM. We estimated the potential log-likelihood using the satnef
data samples to approximate both integrals, thereby encouraging optimistic estiniddie that
estimating the potential log-likelihood in this manner is similar to evaluating the log-lileditod
a kernel density estimate on the training data, although the reconstructidbudistr co(Xx | Xo)
might not correspond to a valid kernel. Also note that by taking more and dateesamples, the
estimate of the potential log-likelihood should become more and more accuigtee EO there-
fore suggests that the negative potential log-likelihood of a GRBM trainéd RCD is at least
1.72 or larger, which is still worse than the performance of, for examplemiké&ure of Gaussian
distributions with 5 components.

The potential log-likelihood is a joint property of the trained first-layer madel the greedy
learning procedure. If the greedy algorithm is responsible for the wedkrmance of the model, it
should be possible to get better results by using a non-greedy strategdlgeY@fore tried to improve
the model’s performance by fine-tuning the weights with the wake-sleepitalgofHinton et al.,
1995). We trained the model for another 100 epochs using the same lsgbarparameters but
with smaller learning rates. This led to a small improvement (Figure 9), but tHinbkel remained
behind the performance of the mixture of Gaussians with two components. @yirapthe same
strategy to the larger model, we were unable to get any further improvenigtite.learning rate
was chosen large enough to cause a measurable change in perfgrthengerformance of the
model decreased.
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5. Discussion

In this paper, we have introduced a new estimator for the likelihood of DBWshave shown that
it can be very efficient for models trained with the greedy learning algoréhchefficient enough
to evaluate models fine-tuned using the wake-sleep algorithm. Howevee haws also seen, the
estimator’s performance depends on the particular parameters of the mddbeeavay the model
was trained. The estimator is unbiased for the unnormalized likelihood, bpaeymptotically
unbiased for the log-likelihood. When evaluating the log-likelihood, this mdeighe number of
samples from the proposal distribution has to be chosen large enougbuie ¢hat the effects of
the bias are small. Since the number of proposal samples is the only parafreeteestimator and
the evaluation can generally be performed quickly, a good way to do this istttheeestimator for
different numbers of proposal samples on a smaller test set.

Using our estimator, we have shown that DBNs based on GRBMs and SRBMsot well
suited for capturing the statistics of natural images. Since the family of DBMsdi@s a very large
number of models if we allow arbitrary Boltzmann machines in the definition, thiswfseodoes
not imply that no DBN is able to model natural images well. In fact, other modelsHi&encRBM
or mPoT (Ranzato and Hinton, 2010; Ranzato et al., 2010b) promise to be letter models
of natural images than the GRBM and can be used to construct DBNs. @uhefgthis paper,
however, was to see if a deep network with simple layer modules could penfell as a generative
model for natural images. While more complex Boltzmann machines are likely tevach better
likelihood, it is not clear why they should also be good choices as layer le®élr constructing
DBNs. In particular, it is not clear why they should also lead to large impnares through the
addition of layers. In our experiments, better performances achievedhsifivst layer were always
accompanied by a decrease in the performance gained by adding Igeesthat a model which
achieves a high likelihood could still have a potential log-likelihood very ctosé This would
make a model a better model for natural images, but not the best choitayas enodule for DBNs
trained with the greedy learning algorithm.

In Ranzato et al. (2011) it was shown that adding a second-layer RBiM tmPoT model leads
to qualitatively different and visually more appealing samples. Howevavedsave shown in this
work, the appearance of samples can be misleading when judging thatenperformance of a
probabilistic model. For the DBN based on GRBMs and SRBMs we arriveldfiement conclusion
about the model’s capabilities than Osindero and Hinton (2008), who lfasiedonclusions mainly
on statistics derived from model samples. We believe that it is thereforté tinar effort to come up
with statistical estimators which directly target the likelihood or related quantities.

The relationship between generative models and models used for olgjeghiton is not yet
fully understood. Hence, the implications of our results on the object rewmg performance
of features learned by a DBN are also not clear. Most DBNs used to features for solving
supervised tasks rarely exceed more than a few layers (e.g., Randadindéon, 2010 show that the
effects of adding layers to a GRBM or mcRBM on object recognition peréorce can be small or
even adverse). This observation might be related to the observationsheraj¢hat adding layers
does not help much to improve the likelihood on natural image patches. A [gssitlanation
for the small contribution of each layer would be that too little information is catriethe hidden
representations of each layer about the respective visible states. Tdussistent with a small
potential log-likelihood and would affect both object recognition and geive performance. If
the visible states can be perfectly reconstructed from the hidden statets, tvhengo(x | Xo) =
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0(X—Xp), the potential log-likelihood reduces to the negative entropy of the datamdxénum
value for the likelihood that any model can achieve.

A much less frequently used hierarchical moddiierarchical ICA for which a greedy learning
algorithm was introduced by Chen and Gopinath (2001) and which capdrmeas a special case of
projection pursuit density estimation. In ICA, all the information about a visitidée is retained in
the hidden representation, so that the potential log-likelihood is optimal folayes module. As
shown in Figure 8, already a single ICA layer can compete with a DBN bas&Bds. Further-
more, adding layers to the network is guaranteed to improve the likelihood of ttiel ifi¢chen and
Gopinath, 2001) and not just a lower bound as with the greedy learningthlg for DBNs. Hos-
seini and Bethge (2009) have shown that adding layers does indeedignificant improvements
of the likelihood, although it was also shown that hierarchical ICA canaptpete with other, non-
hierarchical models of natural images. An interesting question is whethersentations learned
by this model can also compete or outperform those learned by DBNs invesgrbtasks. Compar-
ing the supervised performance of features learned with hierarcidgaahd the model discussed
here could shed further light on the importance of the likelihood when traBigs for supervised
tasks.

A lot of research has been devoted to creating new layer modules (eux eRal., 2010; Ran-
zato and Hinton, 2010; Lee and Ng, 2007; Welling et al., 2005) and firtolitigr approximations
to ML learning for training these (e.g., Gutmann and Bigmen, 2010; Sohl-Dickstein et al., 2009;
Tieleman, 2008). To our knowledge, much less work has been done tovenhr® general strategy
for training DBNSs since its introduction. Currently, the lower layers are ¢in a way which is
independent of whether additional layers will be added to the networleti#&tperformance could
be achieved by devising alternative learning schemes in which the lowes @yeoptimized to bet-
ter assist the upper layers, for example by making sure that the potentididbigood stays large.
Directly regularizing with respect to the potential log-likelihood is difficult doghe nested inte-
grals (see Equation 14). An improvement could nevertheless indirectlghievad by maximizing
the information that is carried in the hidden representations about the stétesvisible units.

An alternative strategy would be to use non-greedy learning strategibsasuthe wake-sleep
algorithm, for which the potential log-likelihood no longer plays a critical rofée showed that
in one case, the wake-sleep algorithm was able to further improve the likdliho@nother case,
we were unable to get any improvement. While more extensive tests aresagcbsfore final
conclusions about its effectiveness should be made, its potential to imgre\ikelihood of the
DBN discussed here seems rather limited.

A very recent paper by Ngiam et al. (2011) introduced an alternafipeoach to hierarchical
modeling of natural images. Instead of stacking probabilistic models on togcbf @her, the ap-
proach is based on a single Boltzmann machine in which the energy functilbmsitserarchically
organized. This allows them to jointly train all parameters of the network and@levaluate the
likelihood much more easily. The paper reports the likelihood of severahicssaof the model and
shows that the model is able to take advantage of multiple layers. Unfortyriataigsed to also
report the likelihood of other, more well known models of natural imagess iftakes it hard to
judge the performance of the model, as the absolute value of the likelihood Ig Hgrendent on
the preprocessing of the data.

Despite good arguments for why hierarchical models should excel atlimgaatural images,
no hierarchical model has been convincingly shown to yield state-odutthgenerative performance
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and outperform other, much simpler models, such as the mixture of Gayssiaesms of the
log-likelihood.
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Appendix A.

In all experiments, we used stochastic gradient descent with a batch 4i@6é data points to train
DBNs. For the 4 by 4 pixel image patches, we usedi® training and 510" test samples in each
trial. For the case of 20 by 20 pixel image patches, we used5raining and 510° test samples.

When PCD was used for training, the persistent Markov chain was updateg one Gibbs
sampling step before each computation of the gradient.

For the GRBM with 100 hidden units trained on 4 by 4 pixel image patches, e as of
0.65 and trained the models for 200 epochs. Together with CD(1) we usedirinig rate of 102
and weight decay of 1@ times the learning rate. With PCD, CD(5) and CD(10) we used a learning
rate of 5 10~3. For all parameters and all models, a momentum paramete® ois@d.

We initialized the second-layer SRBM so that its marginal distribution matchedothiiie
GRBM and trained it for 200 epochs. During training, approximate sampbes the conditional
distribution of the visible units were obtained using 20 parallel mean field updatie a damping
parameter of @ (Welling and Hinton, 2002). For all sampling schemes, we used a leamatiagf
5.102 for hidden-to-visible connections and a learning rate dft * for lateral connections. The
weight decay was set to- 802, The third layer was randomly initialized and had to be trained for
500 epochs before convergence was reached. It employed the gperpdrameters as the second
layer.

The hyperparameters were selected by performing several grichesaréfter the hyperpa-
rameters of the GRBM had been selected, we performed a second gradf$er the second-layer
SRBM and used the same hyperparameters for the third-layer SRBM. Méerped separate grid
searches for CD(1) and PCD, but used the hyperparameters fouCD also with CD(5) and
CD(10). Each grid search comprised 75 hyperparameter combinaticihe {GRBM and 45 hyper-
parameter combinations for the SRBM. After the hyperparameters hadsbkmed, we retrained
the model.

For the larger model applied to 20 by 20 pixel image patches, we trained lyetts lor 200
epochs using PCD. For the GRBM, we used @f 0.7, a learning rate of 1¢ and weight decay of
102. For the SRBM, we used a learning rate of #@or the hidden-to-visible connections and 5
104 for the lateral connections. We used 30 parallel mean field updates withgintarate of @2
to sample the visible units. The hyperparameters of the GRBM were selectefoyming a grid
search over 66 hyperparameter combinations. For the SRBM we triedfé8edif combinations.
Due to the high computational cost of training the two-layer model, we took ttzrgders which
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achieved the best result in the grid search for our comparison andagz@li using a separate test
set.

Partition functions were estimated using AIS. For the smaller model we usddt&émediate
distributions with a linear annealing schedule, 100 samples in the first &séd(bles in the second
and third layer. For the larger model we used a linear annealing schexulé?! intermediate
distributions and 100 importance samples in both layers. The transition operatee SRBM was
implemented using Gibbs sampling. Conditioned on the hidden units, the visible endsipdated
in a random order.

To estimate the unnormalized log-probability of each data point with respecetentialler
models, we used 200 samples from the proposal distribution of our estiratbeftwo-layer, and
500 samples for the three-layer model. For the larger model we used a6(es, although less
would have been sufficient.

For the fine-tuning of the smaller models with the wake-sleep algorithm, weeddie learning
rates to}1 of the original learning rates. Using larger learning rates led to a deciepsrformance.
We used the same hyperparameters for the DBN representing the grdistrffaution. We trained
the models for 100 epochs. Training the models for 200 epochs led to therfumprovements.
We controlled for the estimator’s bias by testing the estimators behavior on a steatlset for
different numbers of proposal samples. We used 4000 samples froprdphesal distribution of
our estimator to estimate the log-likelihood. Using only 500 samples led to essent@karie
results, but the small difference in performance between the two-lagethage-layer model was
less visible.

To estimate the unnormalized hidden marginals of SRBMs, we used 100 pteposples from
an approximating RBM with the same hidden-to-visible connections and samedigiss.

Lastly, note that the performance of the GRBM and the DBN might still be imprbydaking a
larger number of hidden units. A post-hoc analysis revealed that the GiR#%slindeed not overfit
but continues to improve its performance if the variance is decreased wtrigasing the number
of hidden units. This is of course also true for the other models we evaluatede performance
can still be improved if we allow them to use more parameters.

Code for training and evaluating deep belief networks using our estimatdrecbound under

http:// ww. bet hgel ab. or g/ code/ t hei s2011/ .
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