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Figure 1: Convergence behavior of AIS estimates for four-times overcomplete models on 8×8 image
patches. The number of intermediate distributions was 300 for the overcomplete linear model and
107 for the PoT model. Gray lines correspond to estimates with alternative numbers of intermediate
distributions.

1 Energy trace plots and autocorrelation functions

To generate the trace plots for the toy model, we first jointly sampled 5000 hidden states z and
visible states x. We then sampled from the posterior p(z | x) using either Gibbs sampling or HMC.
Markov chains zt were initialized with z0 = BA>x for each visible state x. Finally, we measured
the negative log-density (or energy) of posterior samples at each time step,

− log p(x, zt),

and averaged over posterior samples and data points. Since the hidden states jointly drawn from the
prior can be treated as unbiased samples from the posterior, we can use them to obtain an unbiased
estimate of the energy the Markov chains should converge to (dashed line in Figure 2A of main text).
For the image model, we used 200 actual image patches taken from the van Hateren dataset instead
of samples from the model and therefore could not compute an unbiased estimate of the energy.

For the autocorrelation plots, we used the following generalization of autocorrelation to multivariate
Markov chains,

R(τ) =
E[(zt − µ)>(zt+τ − µ) | x]
E[(zt − µ)>(zt − µ) | x]

,

where µ is E[zt | x]. For the image model, the Markov chain used to estimate 80 seconds of the
autocorrelation function was 20000 seconds long. For the toy model, we used a 10000 seconds long
Markov chain to estimate 15 seconds.

2 Evaluating log-likelihoods

Computing the average log-likelihood of the overcomplete linear model (OLM) and the product of
Student-t distributions (PoT) requires the estimation of analytically intractable integrals. Evaluating
the OLM involves an integral over hidden states for each data point,

pOLM(x) =

∫
pOLM(x, z) dz. (1)

To evaluate the PoT, on the other hand, we need to integrate over visible states to compute its
normalization constant,

Z =

∫
p∗PoT(x) dx, (2)

where p∗PoT(x) is the unnormalized density of the PoT, which can be evaluated easily.
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Both quantities can be estimated using a form of importance sampling, for instance,

Z =

∫
q(x)

p∗PoT(x)

q(x)
dx ≈ 1

K

∑
k

p∗PoT(x
(k))

q(x(k))
= Ẑ, x(k) ∼ q, (3)

where q is some tractable distribution. This yields us unbiased estimates of a PoT’s partition func-
tion, Ẑ, and unbiased estimates of the likelihood of the OLM, p̂PoT(x). However, using Jensen’s
inequality, it is easy to see that this leads to biased estimates of each model’s log-likelihood,

E

[
log

(
p∗PoT(x)

Ẑ

)]
≥ log pPoT(x), (4)

E [log p̂OLM(x)] ≤ log pOLM(x). (5)

Because the partition function is in the denominator, the estimates are biased in different directions.
The behavior of both estimates as a function of the number of samples is shown in Figure 1.

The number of samples and intermediate distributions required for the annealed importance sam-
pling (AIS) procedure to converge to a stable estimate depends on the distribution being sampled
and the transition operator being used to implement MCMC. Since the partition function needs to be
evaluated only once, we can choose the parameters more generously in this case than for evaluating
the OLM.

3 GSM with separately modeled DC component

Here we briefly describe the model corresponding to “GSM” in Figure 4 of the main text. We first
used the discrete cosine transform to separate the DC component,

xDC =
1√
N

∑
i

xi,

from the remaining components x⊥ ∈ RN−1 of an image patch x. The DC component was modeled
using a univariate mixture of Gaussian with 20 components, pDC, while x⊥ was modeled with a
multivariate Gaussian scale mixture, pGSM. That is, the joint distribution of the model is given by

p(x) ∝ pDC(xDC)pGSM(x⊥). (6)
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