
Introduction 
We present an efficient inference and optimization algorithm for maxi-
mum likelihood learning in the overcomplete linear model (OLM). Using a 
persistent variant of expectation maximization, we find that using 
overcomplete representations significantly improves the performance of 
the linear model when applied to natural images while most previous 
studies were unable to detect an advantage [1, 2, 3, 4].

Overcomplete linear model

Here,                            and                  . Note that we don’t assume any additive 
noise on the visible units. 

We use Gaussian scale mixtures (GSMs) to represent the source 
distributions. This family contains the Laplace, Student-t, Cauchy and 
exponential power distribution as a special case.
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Inference
The posterior distribution over latent source variables is constrained to a 
linear subspace and can have multiple modes with heavy tails.
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Blocked Gibbs sampling 
We introduce two sets of auxiliary variables. One set, z , represents the 
missing visible variables [5].
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The other set, � , represents the precisions of the GSM source distribu-

tions. Our blocked Gibbs sampler alternately samples z and �.

Persistent EM
For maximum likelihood learning, we use a Monte Carlo variant of expec-
tation maximization (EM) where in each E-step the data is completed by 
sampling from the posterior. To further speed up learning, we initialize the 
Markov chain with the samples of the previous iteration.

This algorithm works and will converge because each iteration can only 
improve a lower bound on the log-likelihood.

F [q, ✓] = log p(x | ✓)�DKL [q(z | x) || p(z | x, ✓)]
F [Tq, ✓] � F [q, ✓]

Likelihood estimation
We use a form of importance sampling (annealed importance sampling) 
to estimate the likelihood of the model. This yields an unbiased estimator 
of the likelihood and a conservative estimator of the log-likelihood. 
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Performance of the blocked Gibbs sampler
We compare the performance of the Gibbs sampler to the performance of 
Hamiltonian Monte Carlo (HMC) sampling. 

The upper plots show trace plots of posterior density, the lower plots show 
autocorrelation functions averaged over several data points.
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Overcompleteness and sparsity

When applied to natural image patches, the model learns highly sparse 
source distributions and three to four times overcomplete representations.

Model comparison

We compared the performance of the OLM with a product of experts (PoE) 
model, which represents another generalization of the linear model to 
overcomplete representations.
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Here, we use the product of Student-t distributions.

Conclusions and remarks
• Efficient maximum likelihood learning in overcomplete linear models is 
possible and enables us to jointly optimize filters and sources.

• A linear model for natural images can benefit from overcomplete re-
presentations if the source distributions are  highly leptokurtotic.

• The presented algorithm can easily be extended to more powerful 
models of natural images such as subspace or bilinear models.

Resources
Code for training  and evaluating overcomplete linear models:

        http://bethgelab.org/code/theis2012d/
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1. initialize z
2. repeat
3.    
4.    maximize 

z ⇠ T (·; z,x)
log p(x, z | ✓)
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