
Appendix A: Notation

Example Description
z Scalar
z Vector
Z Continuous random variable
K Discrete random variable
Z Continuous random vector

p(z) Continuous PDF
P (k) Discrete PMF
H[K] Discrete entropy
h[Z] Differential entropy
E[Z] Expectation

DKL[qZ|x || pZ] Kullback-Leibler divergence
DTV[q, p] Total variation distance

Appendix B: Computational complexity of reverse channel coding

Existing algorithms for lossy compression without quantization communicate a sample by simulating a large
number of random variables Zn ⇠ p and then identifying an index N

⇤ such that ZN⇤ is distributed according
to q, at least approximately in a total variation sense [e.g., 11, 15]. Here we show that no polynomial time
algorithm exists which achieves this, assuming RP 6= NP , where RP is the class of randomized polynomial
time algorithms.

Our result depends on the results of Long and Servedio [22, Theorem 13], who showed that simulating restricted
Boltzmann machines (RBMs) [30] approximately is computationally hard. For completeness, we repeat it in
slightly weakened but simpler form here:
Theorem 1. If RP 6= NP , then there is no polynomial-time algorithm with the following property: Given
as input ✓ = (A,a, b) such that A is an M ⇥ M matrix, the algorithm outputs an efficiently evaluatable
representation of a distribution whose total variation distance from an RBM with parameters ✓ is at most 1

12 .

Here, an efficiently evaluatable representation of a distribution q is defined as a Boolean function

f : {0, 1}N ! {0, 1}M (25)

with the following two properties. First, f(B) ⇠ q if B is a random vector of uniformly random bits. Second,
N and the function’s computational complexity are bounded by a polynomial in M .

One might hope that having access to samples from a similar distribution would help to efficiently simulate an
RBM. The following lemma shows that additional samples quickly become unhelpful as the Kullback-Leibler
divergence between the two distributions increases.
Lemma 1. Consider an algorithm which receives a description of an arbitrary probability distribution q as
input and is also given access to an unlimited number of i.i.d. random variables Zn ⇠ p. It outputs Z ⇠ q̃ such
that its distribution is approximately q in the sense that DTV[q̃, q] 1/12. If RP 6= NP , then there is no such
algorithm whose time complexity is polynomial in DKL[q || p].

Proof. Let z 2 {0, 1}M be a binary vector and let

q(z) =
1
Z

X

h2{0,1}M
exp(a>z + h>Az + b>h) (26)

be the probability distribution of an RBM with normalization constant Z and parameters a, b 2 RM and
A 2 RM⇥M . Further, let p(z) = 2�M be the uniform distribution. Then

DKL[q || p] =
X

z2{0,1}M
q(z) log2

q(z)
2�M

= M �H[q] M. (27)

If there is an algorithm which generates an approximate sample from an RBM’s distribution q in a number of
steps which is polynomial in DKL[q || p], then its computational complexity is also bounded by a polynomial in
M . In that time the algorithm can take into account at most N random variables Zn where N is polynomial in
M , that is, N = (M) for some polynomial . Since the input random variables are independent and identical,
we can assume without loss of generality that the algorithm simply uses the first N random variables. The
N random variables correspond to an input of M (M) uniformly random bits. Note that M (M) is still
polynomial in M .

However, Theorem 1 states that there is no such polynomial time algorithm if RP 6= NP .

11

Appendix C: Generalizations of universal quantization

Figure 4: A visualization of an example of the generalized uniform noise channel which can be
implemented efficiently. Blue dots represent a lattice and black lines indicate corresponding Voronoi
cells. The black dot corresponds to the coefficients y and the orange dots are realizations of the
random variable y +U .

While the approach discussed in the main text is statistically and computationally efficient, it only allows us
to communicate samples from a simple uniform distribution. We briefly discuss two possible avenues for
generalizing this approach.

One such generalization to lattice quantizers was already discussed by Ziv [37]. Let ⇤ be a lattice and Q⇤(y) be
the nearest neighbor of y in the lattice. Further let V be a Voronoi cell of the lattice and U ⇠ U(V) be a random
vector which is uniformly distributed over the Voronoi cell. Then [34, Theorem 4.1.1]

Q⇤(y �U) +U ⇠ y +U . (28)

An example is visualized in Figure 4. For certain lattices and in high dimensional spaces, U will be distributed
approximately like a Gaussian [34]. This means universal quantization could be used to approximately simulate
an additive white Gaussian noise channel.

Another possibility to obtain Gaussian noise would be the following. Let S be a positive random variable
independent of Y and U ⇠ U([�0.5, 0.5)). We assume that S like U is known to both the encoder and the
decoder. It follows that

(by/S � Ue+ U) · S ⇠ y + SU
0 (29)

for another uniform random variable U
0. If G ⇠ �(3/2, 1/2) and S = 2�

p
G, then SU

0 has a Gaussian
distribution with variance �2 [24]. More generally, this approach allows us to implement any noise which
can be represented as a uniform scale mixture. However, the average number of bits required for transmitting
K = by/S � Ue can be shown to be (Appendix B)

H[K | U, S] = I[Y, (Z, S)] � I[Y, Z], (30)

where Z = Y + SU
0. This means we require more bits than we would like to if all we want to transmit is Z.

However, if we consider (Z, S) to be the message, then again we are using only as many bits as we transmit
information.

Appendix D: Differentiability of soft-rounding

For ↵ > 0, we defined a soft rounding function as

s↵(y) = byc+ 1
2

tanh(↵r)
tanh(↵/2)

+
1
2
, where r = y � byc � 1

2
. (31)

12

The soft-rounding function is differentiable everywhere. First, we show that the derivative exists at 0. The right
derivative of s↵ at 0 exists and is given by

lim
"#0

s↵(")� s↵(0)
"

= lim
"#0

1
"

✓
b"c � 1

2

tanh(↵("� b"c � 1
2))

tanh(↵/2)
� 1

2
tanh(�↵/2)
tanh(↵/2)

◆
(32)

= lim
"#0

1
"

✓
1
2

tanh(↵("� 1
2))

tanh(↵/2)
� 1

2
tanh(�↵/2)
tanh(↵/2)

◆
(33)

= lim
"#0

tanh(↵("� 1
2))� tanh(�↵/2)

2" tanh(↵/2)
(34)

=
1

2 tanh(↵/2)
lim
"#0

tanh(↵"� ↵/2)� tanh(�↵/2)
"

(35)

=
1

2 tanh(↵/2)
@

@x
tanh (↵x� ↵/2)

����
x=0

(36)

=
↵

2
tanh0 (�↵/2)
tanh(↵/2)

. (37)

Similarly, the left derivative at 0 exists and is given by

lim
""0

s↵(")� s↵(0)
"

= lim
""0

1
"

✓
b"c+ 1

2

tanh(↵("� b"c � 1
2))

tanh(↵/2)
� 1

2
tanh(�↵/2)
tanh(↵/2)

◆
(38)

= lim
""0

1
"

✓
�1 +

1
2

tanh(↵("+ 1
2))

tanh(↵/2)
� 1

2
tanh(�↵/2)
tanh(↵/2)

◆
(39)

= lim
""0

�2 tanh(↵/2) + tanh(↵("+ 1
2)) + tanh(↵/2)

2" tanh(↵/2)
(40)

=
1

2 tan(↵/2)
lim
""0

tanh(↵"� ↵/2)� tanh(↵/2)
"

(41)

=
↵

2
tanh0 (�↵/2)
tanh(↵/2)

. (42)

Since the left and right derivatives are equal, s↵ is differentiable at 0. Since s↵(y + 1) = s↵(y) + 1, the
derivative also exists for other integers and it is easy to see that s↵ is differentiable for y /2 Z. Hence, s↵ is
differentiable everywhere.

Appendix E: Adapting density models

For the rate term we need to model the density of f(x) +U . When y = f(x) is assumed to have independent
components, we only need to model individual components Y + U . Following Ballé et al. [6], we parameterize
the model through the cumulative distribution cY of Y , as we have

pY +U (y) = cY (y + 0.5)� cY (y � 0.5). (43)

We can generalize this to model the density of s(Y) + U , where s : R ! R is an invertible function. Since
cs(Y) = cY (s�1(y)), we have

ps(Y)+U (y) = cY (s�1(y) + 0.5)� cY (s�1(y)� 0.5). (44)

This means we can easily adjust a model for the density of f(X) to model the density of s↵(f(X)) + U .
In addition to being a suitable density, creating an explicit dependency on ↵ has the added advantage of
automatically adapting the density if we choose to change ↵ during training.

13

Appendix F: Additional experimental results

A B

C

Figure 5: Additional results for the linear model evaluated on the Kodak dataset [20]. A: The linear
model as described in the main text but instead of a random orthogonal initialization, the linear
transforms are initialized to the ones used by JPEG/JFIF [16]. That is, a YCC color transformation
followed by a DCT for the encoder and corresponding inverses for the decoder. B: The linear model
orthogonally initialized as in the main text but evaluated in terms of MSE instead of PSNR. C: The
same linear model (orthogonally initialized, trained with respect to MSE) evaluated in terms of
MS-SSIM.

14

A B

C

Figure 6: Additional results for the hyperprior model evaluated on the Kodak dataset [20]. A: The
hyperprior model from the main text but evaluated in terms of MSE instead of PSNR. B: The same
model evaluated in terms of MS-SSIM. C: The effect of expected gradients shown for the full bitrate
range.

Appendix G: Qualitative results

Below we include reconstructions of images from the Kodak dataset [20] for the three approaches UN + UQ,
UN + Q, and UN + UQ + SR trained with the same trade-off parameter �. We chose a low bit-rate to make the
differences more easily visible.

For the linear model (Figures 7-9), reconstructions using UN + Q and UN + UQ + SR have visible blocking
artefacts as would be expected given their similarity to JPEG/JFIF [16]. UN + UQ masks the blocking artefacts
almost completely at the expense of introducing grain.

For the hyperprior model (Figures 10-12), we noticed a tendency of UN + Q to produce grid artefacts which we
did not observe using UN + UQ + SR.

15

UN + UQ, bpp: 0.762 (113%), PSNR: 32.79

UN + Q, bpp: 0.672 (100%), PSNR: 34.33

UN + UQ + SR, bpp: 0.562 (83%), PSNR: 33.60

Figure 7: Linear model, kodim03

16

UN + UQ, bpp: 0.836 (111%), PSNR: 32.22

UN + Q, bpp: 0.750 (100%), PSNR: 33.09

UN + UQ + SR, bpp: 0.623 (83%), PSNR: 32.54

Figure 8: Linear model, kodim16

17

UN + UQ, bpp: 0.778 (115%), PSNR: 33.05

UN + Q, bpp: 0.674 (100%), PSNR: 34.71

UN + UQ + SR, bpp: 0.572 (84%), PSNR: 33.98

Figure 9: Linear model, kodim23

18

UN + UQ, bpp: 0.091 (143%), PSNR: 29.36

UN + Q, bpp: 0.063 (100%), PSNR: 28.78

UN + UQ + SR, bpp: 0.059 (93%), PSNR: 29.55

Figure 10: Hyperprior model, kodim02

19

UN + UQ, bpp: 0.099 (137%), PSNR: 29.31

UN + Q, bpp: 0.073 (100%), PSNR: 28.82

UN + UQ + SR, bpp: 0.072 (99%), PSNR: 29.56

Figure 11: Hyperprior model, kodim15

20

UN + UQ, bpp: 0.156 (130%), PSNR: 27.11

UN + Q, bpp: 0.120 (100%), PSNR: 26.75

UN + UQ + SR, bpp: 0.123 (102%), PSNR: 27.08

Figure 12: Hyperprior model, kodim21

21

