## Appendix A: Notation

| Example | Description |
| :---: | :---: |
| $z$ | Scalar |
| $\boldsymbol{z}$ | Vector |
| $Z$ | Continuous random variable |
| $K$ | Discrete random variable |
| $\boldsymbol{Z}$ | Continuous random vector |
| $p(\boldsymbol{z})$ | Continuous PDF |
| $P(k)$ | Discrete PMF |
| $H[K]$ | Discrete entropy |
| $h[Z]$ | Differential entropy |
| $\mathbb{E}[Z]$ | Expectation |
| $D_{\mathrm{KL}}\left[q_{\boldsymbol{Z} \mid \boldsymbol{x}} \\| p_{\boldsymbol{Z}}\right]$ | Kullback-Leibler divergence |
| $D_{\mathrm{TV}}[q, p]$ | Total variation distance |

## Appendix B: Computational complexity of reverse channel coding

Existing algorithms for lossy compression without quantization communicate a sample by simulating a large number of random variables $Z_{n} \sim p$ and then identifying an index $N^{*}$ such that $Z_{N^{*}}$ is distributed according to $q$, at least approximately in a total variation sense [e.g., 11] 15]. Here we show that no polynomial time algorithm exists which achieves this, assuming $R P \neq N P$, where $R P$ is the class of randomized polynomial time algorithms.

Our result depends on the results of Long and Servedio [22] Theorem 13], who showed that simulating restricted Boltzmann machines (RBMs) [30] approximately is computationally hard. For completeness, we repeat it in slightly weakened but simpler form here:
Theorem 1. If $R P \neq N P$, then there is no polynomial-time algorithm with the following property: Given as input $\boldsymbol{\theta}=(\boldsymbol{A}, \boldsymbol{a}, \boldsymbol{b})$ such that $\boldsymbol{A}$ is an $M \times M$ matrix, the algorithm outputs an efficiently evaluatable representation of a distribution whose total variation distance from an RBM with parameters $\boldsymbol{\theta}$ is at most $\frac{1}{12}$.

Here, an efficiently evaluatable representation of a distribution $q$ is defined as a Boolean function

$$
\begin{equation*}
f:\{0,1\}^{N} \rightarrow\{0,1\}^{M} \tag{25}
\end{equation*}
$$

with the following two properties. First, $f(\boldsymbol{B}) \sim q$ if $\boldsymbol{B}$ is a random vector of uniformly random bits. Second, $N$ and the function's computational complexity are bounded by a polynomial in $M$.
One might hope that having access to samples from a similar distribution would help to efficiently simulate an RBM. The following lemma shows that additional samples quickly become unhelpful as the Kullback-Leibler divergence between the two distributions increases.
Lemma 1. Consider an algorithm which receives a description of an arbitrary probability distribution $q$ as input and is also given access to an unlimited number of i.i.d. random variables $\boldsymbol{Z}_{n} \sim p$. It outputs $\boldsymbol{Z} \sim \tilde{q}$ such that its distribution is approximately $q$ in the sense that $D_{T V}[\tilde{q}, q] \leq 1 / 12$. If $R P \neq N P$, then there is no such algorithm whose time complexity is polynomial in $D_{K L}[q \| p]$.

Proof. Let $\boldsymbol{z} \in\{0,1\}^{M}$ be a binary vector and let

$$
\begin{equation*}
q(\boldsymbol{z})=\frac{1}{Z} \sum_{\boldsymbol{h} \in\{0,1\}^{M}} \exp \left(\boldsymbol{a}^{\top} \boldsymbol{z}+\boldsymbol{h}^{\top} \boldsymbol{A} \boldsymbol{z}+\boldsymbol{b}^{\top} \boldsymbol{h}\right) \tag{26}
\end{equation*}
$$

be the probability distribution of an RBM with normalization constant $Z$ and parameters $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{M}$ and $\boldsymbol{A} \in \mathbb{R}^{M \times M}$. Further, let $p(\boldsymbol{z})=2^{-M}$ be the uniform distribution. Then

$$
\begin{equation*}
D_{\mathrm{KL}}[q \| p]=\sum_{\boldsymbol{z} \in\{0,1\}^{M}} q(\boldsymbol{z}) \log _{2} \frac{q(\boldsymbol{z})}{2^{-M}}=M-H[q] \leq M . \tag{27}
\end{equation*}
$$

If there is an algorithm which generates an approximate sample from an RBM's distribution $q$ in a number of steps which is polynomial in $D_{\mathrm{KL}}[q \| p]$, then its computational complexity is also bounded by a polynomial in $M$. In that time the algorithm can take into account at most $N$ random variables $\boldsymbol{Z}_{n}$ where $N$ is polynomial in $M$, that is, $N=\psi(M)$ for some polynomial $\psi$. Since the input random variables are independent and identical, we can assume without loss of generality that the algorithm simply uses the first $N$ random variables. The $N$ random variables correspond to an input of $M \psi(M)$ uniformly random bits. Note that $M \psi(M)$ is still polynomial in $M$.
However, Theorem 1 states that there is no such polynomial time algorithm if $R P \neq N P$.

## Appendix C: Generalizations of universal quantization



Figure 4: A visualization of an example of the generalized uniform noise channel which can be implemented efficiently. Blue dots represent a lattice and black lines indicate corresponding Voronoi cells. The black dot corresponds to the coefficients $\boldsymbol{y}$ and the orange dots are realizations of the random variable $\boldsymbol{y}+\boldsymbol{U}$.

While the approach discussed in the main text is statistically and computationally efficient, it only allows us to communicate samples from a simple uniform distribution. We briefly discuss two possible avenues for generalizing this approach.

One such generalization to lattice quantizers was already discussed by $\operatorname{Ziv}$ [37]. Let $\Lambda$ be a lattice and $Q_{\Lambda}(\boldsymbol{y})$ be the nearest neighbor of $\boldsymbol{y}$ in the lattice. Further let $\mathcal{V}$ be a Voronoi cell of the lattice and $\boldsymbol{U} \sim U(\mathcal{V})$ be a random vector which is uniformly distributed over the Voronoi cell. Then [34, Theorem 4.1.1]

$$
\begin{equation*}
Q_{\Lambda}(\boldsymbol{y}-\boldsymbol{U})+\boldsymbol{U} \sim \boldsymbol{y}+\boldsymbol{U} \tag{28}
\end{equation*}
$$

An example is visualized in Figure 4 For certain lattices and in high dimensional spaces, $\boldsymbol{U}$ will be distributed approximately like a Gaussian [34]. This means universal quantization could be used to approximately simulate an additive white Gaussian noise channel.
Another possibility to obtain Gaussian noise would be the following. Let $S$ be a positive random variable independent of $Y$ and $U \sim U([-0.5,0.5))$. We assume that $S$ like $U$ is known to both the encoder and the decoder. It follows that

$$
\begin{equation*}
(\lfloor y / S-U\rceil+U) \cdot S \sim y+S U^{\prime} \tag{29}
\end{equation*}
$$

for another uniform random variable $U^{\prime}$. If $G \sim \Gamma\left(3 / 2,{ }^{1} / 2\right)$ and $S=2 \sigma \sqrt{G}$, then $S U^{\prime}$ has a Gaussian distribution with variance $\sigma^{2}$ [24]. More generally, this approach allows us to implement any noise which can be represented as a uniform scale mixture. However, the average number of bits required for transmitting $K=\lfloor y / S-U\rceil$ can be shown to be (Appendix B)

$$
\begin{equation*}
H[K \mid U, S]=I[Y,(Z, S)] \geq I[Y, Z] \tag{30}
\end{equation*}
$$

where $Z=Y+S U^{\prime}$. This means we require more bits than we would like to if all we want to transmit is $Z$. However, if we consider $(Z, S)$ to be the message, then again we are using only as many bits as we transmit information.

## Appendix D: Differentiability of soft-rounding

For $\alpha>0$, we defined a soft rounding function as

$$
\begin{equation*}
s_{\alpha}(y)=\lfloor y\rfloor+\frac{1}{2} \frac{\tanh (\alpha r)}{\tanh (\alpha / 2)}+\frac{1}{2}, \quad \text { where } \quad r=y-\lfloor y\rfloor-\frac{1}{2} . \tag{31}
\end{equation*}
$$

The soft-rounding function is differentiable everywhere. First, we show that the derivative exists at 0 . The right derivative of $s_{\alpha}$ at 0 exists and is given by

$$
\begin{align*}
\lim _{\varepsilon \downarrow 0} \frac{s_{\alpha}(\varepsilon)-s_{\alpha}(0)}{\varepsilon} & =\lim _{\varepsilon \downarrow 0} \frac{1}{\varepsilon}\left(\lfloor\varepsilon\rfloor-\frac{1}{2} \frac{\tanh \left(\alpha\left(\varepsilon-\lfloor\varepsilon\rfloor-\frac{1}{2}\right)\right)}{\tanh (\alpha / 2)}-\frac{1}{2} \frac{\tanh (-\alpha / 2)}{\tanh (\alpha / 2)}\right)  \tag{32}\\
& =\lim _{\varepsilon \downarrow 0} \frac{1}{\varepsilon}\left(\frac{1}{2} \frac{\tanh \left(\alpha\left(\varepsilon-\frac{1}{2}\right)\right)}{\tanh (\alpha / 2)}-\frac{1}{2} \frac{\tanh (-\alpha / 2)}{\tanh (\alpha / 2)}\right)  \tag{33}\\
& =\lim _{\varepsilon \downarrow 0} \frac{\tanh \left(\alpha\left(\varepsilon-\frac{1}{2}\right)\right)-\tanh (-\alpha / 2)}{2 \varepsilon \tanh (\alpha / 2)}  \tag{34}\\
& =\frac{1}{2 \tanh (\alpha / 2)} \lim _{\varepsilon \downarrow 0} \frac{\tanh (\alpha \varepsilon-\alpha / 2)-\tanh (-\alpha / 2)}{\varepsilon}  \tag{35}\\
& =\left.\frac{1}{2 \tanh (\alpha / 2)} \frac{\partial}{\partial x} \tanh (\alpha x-\alpha / 2)\right|_{x=0}  \tag{36}\\
& =\frac{\alpha}{2} \frac{\tanh ^{\prime}(-\alpha / 2)}{\tanh ^{(\alpha / 2)} .} \tag{37}
\end{align*}
$$

Similarly, the left derivative at 0 exists and is given by

$$
\begin{align*}
\lim _{\varepsilon \uparrow 0} \frac{s_{\alpha}(\varepsilon)-s_{\alpha}(0)}{\varepsilon} & =\lim _{\varepsilon \uparrow 0} \frac{1}{\varepsilon}\left(\lfloor\varepsilon\rfloor+\frac{1}{2} \frac{\tanh \left(\alpha\left(\varepsilon-\lfloor\varepsilon\rfloor-\frac{1}{2}\right)\right)}{\tanh (\alpha / 2)}-\frac{1}{2} \frac{\tanh (-\alpha / 2)}{\tanh (\alpha / 2)}\right)  \tag{38}\\
& =\lim _{\varepsilon \uparrow 0} \frac{1}{\varepsilon}\left(-1+\frac{1}{2} \frac{\tanh \left(\alpha\left(\varepsilon+\frac{1}{2}\right)\right)}{\tanh (\alpha / 2)}-\frac{1}{2} \frac{\tanh (-\alpha / 2)}{\tanh (\alpha / 2)}\right)  \tag{39}\\
& =\lim _{\varepsilon \uparrow 0} \frac{-2 \tanh (\alpha / 2)+\tanh \left(\alpha\left(\varepsilon+\frac{1}{2}\right)\right)+\tanh (\alpha / 2)}{2 \varepsilon \tanh (\alpha / 2)}  \tag{40}\\
& =\frac{1}{2 \tan (\alpha / 2)} \lim _{\varepsilon \uparrow 0} \frac{\tanh (\alpha \varepsilon-\alpha / 2)-\tanh (\alpha / 2)}{\varepsilon}  \tag{41}\\
& =\frac{\alpha}{2} \frac{\tanh ^{\prime}(-\alpha / 2)}{\tanh ^{(\alpha / 2)} .} \tag{42}
\end{align*}
$$

Since the left and right derivatives are equal, $s_{\alpha}$ is differentiable at 0 . Since $s_{\alpha}(y+1)=s_{\alpha}(y)+1$, the derivative also exists for other integers and it is easy to see that $s_{\alpha}$ is differentiable for $y \notin \mathbb{Z}$. Hence, $s_{\alpha}$ is differentiable everywhere.

## Appendix E: Adapting density models

For the rate term we need to model the density of $f(\boldsymbol{x})+\boldsymbol{U}$. When $\boldsymbol{y}=f(\boldsymbol{x})$ is assumed to have independent components, we only need to model individual components $Y+U$. Following Ballé et al. [6], we parameterize the model through the cumulative distribution $c_{Y}$ of $Y$, as we have

$$
\begin{equation*}
p_{Y+U}(y)=c_{Y}(y+0.5)-c_{Y}(y-0.5) . \tag{43}
\end{equation*}
$$

We can generalize this to model the density of $s(Y)+U$, where $s: \mathbb{R} \rightarrow \mathbb{R}$ is an invertible function. Since $c_{s(Y)}=c_{Y}\left(s^{-1}(y)\right)$, we have

$$
\begin{equation*}
p_{s(Y)+U}(y)=c_{Y}\left(s^{-1}(y)+0.5\right)-c_{Y}\left(s^{-1}(y)-0.5\right) . \tag{44}
\end{equation*}
$$

This means we can easily adjust a model for the density of $f(\boldsymbol{X})$ to model the density of $s_{\alpha}(f(\boldsymbol{X}))+\boldsymbol{U}$. In addition to being a suitable density, creating an explicit dependency on $\alpha$ has the added advantage of automatically adapting the density if we choose to change $\alpha$ during training.

## Appendix F: Additional experimental results



Figure 5: Additional results for the linear model evaluated on the Kodak dataset [20]. A: The linear model as described in the main text but instead of a random orthogonal initialization, the linear transforms are initialized to the ones used by JPEG/JFIF [16]. That is, a YCC color transformation followed by a DCT for the encoder and corresponding inverses for the decoder. $\mathbf{B}$ : The linear model orthogonally initialized as in the main text but evaluated in terms of MSE instead of PSNR. C: The same linear model (orthogonally initialized, trained with respect to MSE) evaluated in terms of MS-SSIM.


Figure 6: Additional results for the hyperprior model evaluated on the Kodak dataset [20]. A: The hyperprior model from the main text but evaluated in terms of MSE instead of PSNR. B: The same model evaluated in terms of MS-SSIM. C: The effect of expected gradients shown for the full bitrate range.

## Appendix G: Qualitative results

Below we include reconstructions of images from the Kodak dataset [20] for the three approaches $\mathbf{U N}+\mathbf{U Q}$, $\mathbf{U N}+\mathbf{Q}$, and $\mathbf{U N}+\mathbf{U Q}+\mathbf{S R}$ trained with the same trade-off parameter $\lambda$. We chose a low bit-rate to make the differences more easily visible.
For the linear model (Figures $7 / 9$, reconstructions using $\mathbf{U N}+\mathbf{Q}$ and $\mathbf{U N}+\mathbf{U Q}+\mathbf{S R}$ have visible blocking artefacts as would be expected given their similarity to JPEG/JFIF [16]. UN + UQ masks the blocking artefacts almost completely at the expense of introducing grain.

For the hyperprior model (Figures 10 12), we noticed a tendency of $\mathbf{U N}+\mathbf{Q}$ to produce grid artefacts which we did not observe using $\mathbf{U N}+\mathbf{U Q}+\mathbf{S R}$.

$\mathbf{U N}+\mathbf{U Q}$, bpp: 0.762 (113\%), PSNR: 32.79

$\mathbf{U N}+\mathbf{Q}$, bpp: 0.672 (100\%), PSNR: 34.33

$\mathbf{U N}+\mathbf{U Q}+\mathbf{S R}$, bpp: 0.562 (83\%), PSNR: 33.60
Figure 7: Linear model, kodim03

$\mathbf{U N}+\mathbf{U Q}$, bpp: 0.836 (111\%), PSNR: 32.22

$\mathbf{U N}+\mathbf{Q}$, bpp: 0.750 (100\%), PSNR: 33.09

$\mathbf{U N}+\mathbf{U Q}+\mathbf{S R}$, bpp: 0.623 (83\%), PSNR: 32.54
Figure 8: Linear model, kodim16


UN + UQ, bpp: 0.778 (115\%), PSNR: 33.05


UN + Q, bpp: 0.674 (100\%), PSNR: 34.71

$\mathbf{U N}+\mathbf{U Q}+\mathbf{S R}$, bpp: 0.572 (84\%), PSNR: 33.98
Figure 9: Linear model, kodim23


UN + UQ, bpp: 0.091 (143\%), PSNR: 29.36

$\mathbf{U N}+\mathbf{Q}$, bpp: 0.063 (100\%), PSNR: 28.78

$\mathbf{U N}+\mathbf{U Q}+\mathbf{S R}$, bpp: 0.059 (93\%), PSNR: 29.55
Figure 10: Hyperprior model, kodim02

$\mathbf{U N}+\mathbf{U Q}$, bpp: 0.099 (137\%), PSNR: 29.31


UN + Q, bpp: 0.073 (100\%), PSNR: 28.82

$\mathbf{U N}+\mathbf{U Q}+\mathbf{S R}$, bpp: 0.072 (99\%), PSNR: 29.56
Figure 11: Hyperprior model, kodim15

$\mathbf{U N}+\mathbf{U Q}$, bpp: 0.156 (130\%), PSNR: 27.11

$\mathbf{U N}+\mathbf{Q}$, bpp: 0.120 (100\%), PSNR: 26.75

$\mathbf{U N}+\mathbf{U Q}+\mathbf{S R}$, bpp: 0.123 (102\%), PSNR: 27.08
Figure 12: Hyperprior model, kodim 21

