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Summary  
A fundamental challenge in calcium imaging has been to infer the timing of action potentials 
from the measured noisy calcium fluorescence traces. We systematically evaluate a range of 
spike inference algorithms on a large benchmark dataset recorded from varying neural tissue 
(V1 and retina) using different calcium indicators (OGB-1 and GCamp6). We show that a 
new algorithm based on supervised learning in flexible probabilistic models outperforms all 
previously published techniques, setting a new standard for spike inference from calcium 
signals. Importantly, it performs better than other algorithms even on datasets not seen 
during training. Future data acquired in new experimental conditions can easily be used to 
further improve its spike prediction accuracy and generalization performance. Finally, we 
show that comparing algorithms on artificial data is not informative about performance on 
real population imaging data, suggesting that a benchmark dataset may greatly facilitate 
future algorithmic developments. 
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Introduction 
Over the past two decades, two-photon imaging has become one of the most widely used 
techniques for studying information processing in neural populations in vivo (Denk et al., 
1990; Kerr and Denk, 2008). Typically, a calcium indicator such as the synthetic dye Oregon 
green BAPTA-1 (OGB-1) (Stosiek et al., 2003) or the genetically encoded GCamp6 (Chen et 
al., 2013) is used to image a large fraction of cells in a neural tissue. Individual action 
potentials lead to a fast rise in fluorescence, followed by a slow decay with a time constant of 
several hundred milliseconds (Chen et al., 2013; Kerr et al., 2005). Commonly, neural 
population activity from dozens or hundreds of cells is imaged using relatively slow scanning 
speeds (<15 Hz), but novel fast scanning methods (Cotton et al., 2013; Grewe et al., 2010) 
(up to several 100 Hz) have opened additional opportunities for studying neural population 
activity at increased temporal resolution.  

A fundamental challenge has been to infer the timing of action potentials from the measured 
noisy calcium fluorescence traces. To solve this problem of spike inference, several different 
approaches have been proposed, including template-matching (Greenberg et al., 2008; 
Grewe et al., 2010; Oñativia et al., 2013) and deconvolution (Park et al., 2013; 
Pnevmatikakis et al., 2013, 2014; Vogelstein et al., 2009, 2010; Yaksi and Friedrich, 2006). 
These methods have in common that they assume a forward generative model of calcium 
signal generation which is then inverted to infer spike times. A crucial shortcoming of this 
approach is that the forward models make strong a-priori assumptions about the shape of the 
calcium fluorescence signal induced by a single spike and the statistics of the noise. 
Alternatively, simple supervised learning techniques, which learn their parameters from data, 
have been used to infer spikes from calcium signals (Sasaki et al., 2008).  

However, it is currently not known which approach is most successful at inferring spikes 
under experimental conditions, as a detailed quantitative comparison of different algorithms 
on large datasets of in vitro and in vivo population imaging data has been lacking. Rather, 
most published algorithms have only been evaluated on relatively small experimental 
datasets using different performance measures. In addition, the question of how well we can 
reconstruct the spikes of neurons given calcium measurements has been studied 
theoretically or using simulated datasets (Lütcke et al., 2013; Wilt et al., 2013). While such 
studies offer the advantage that many model parameters are under the control of the 
investigator, they do not answer the question of how well we can reconstruct spikes from 
actual measurements.  

Here, we advocate a data-driven approach based on flexible probabilistic models to infer 
spikes from calcium fluorescence traces. We collected a large benchmark dataset including 
simultaneous measurements of spikes and calcium signals in primary visual cortex and the 
retina of mice using OGB-1 and GCamp6 as calcium indicators. We systematically evaluate 
a range of spike inference algorithms and show that supervised learning in flexible 
probabilistic models outperforms all previously published techniques, setting a new standard 
for spike inference from calcium signals.   
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Results 

A flexible probabilistic model for spike inference 
We propose to model the probabilistic relationship between a segment of the fluorescence 
trace 𝒙𝑡  and the number of spikes 𝑘𝑡  in a small time bin, assuming they are Poisson 
distributed with rate 𝜆(𝒙𝑡): 

𝑝( 𝑘𝑡 ∣∣ 𝒙𝑡 ) =  
𝜆(𝒙𝑡)𝑘

𝑘!
𝑒−𝜆(𝒙𝑡). 

 

Instead of relying on a specific forward model, we modeled the firing rate 𝜆(𝒙𝑡) using a 
recently introduced extension of generalized linear models, the factored spike-triggered 
mixture (STM) model (Theis et al., 2013) (Fig. 1a; see Methods): 

𝜆STM(𝒙𝑡) =  � exp�� 𝛽𝑘𝑘(𝒖𝑘⊤ 𝒙𝑡)2 + 𝒘𝑘
⊤𝒙𝑡 + 𝒃𝑘

𝑀

𝑘=1

� .
𝐾

𝑘=1

 

We train this model on simultaneous recordings of spikes and calcium traces to learn a set of 
𝐾  linear features 𝒘𝑘  and 𝑀 quadratic features 𝒖𝑘  (‘supervised learning’), which are 
predictive of the occurrence of spikes in the fluorescence trace. Importantly, this model is 
sufficiently flexible to capture non-linear relationships between fluorescence traces and 
spikes, but at the same time is sufficiently restricted to avoid overfitting when little data is 
available. Below we will evaluate whether this model is too simple or already more complex 
than necessary by comparing its performance to that of multi-layer neural networks and 
simple LNP-type models.  

Fig. 1: Spike inference from calcium measurements  

Using a probabilistic model in this way not only provides us with an estimate of the expected 
firing rate, 𝜆(𝒙𝑡), but also with access to a distribution over spike counts, as fully Bayesian 
methods do (Pnevmatikakis et al., 2013, 2014; Vogelstein et al., 2009). This allows us to 
estimate the uncertainty in the predictions and to generate example spikes trains without 
spending considerable computational resources. 

Benchmarking spike inference algorithms on experimental data 
To quantitatively evaluate different spike inference approaches including our model, we 
acquired a large benchmark dataset with a total of 75 traces of 67 neurons, in which we 
simultaneously recorded calcium signals and spikes (Fig. 1b; in total ~ 89,000 spikes). These 
cells were recorded with different scanning methods, different calcium indicators and at 
different sampling rates (see Table 1 and Methods): Dataset 1 consisted of 16 neurons 
recorded in-vivo in V1 of anesthetized mice using fast 3D AOD-based imaging (Cotton et al., 
2013) at ~320 Hz with OGB-1 as indicator. Dataset 2 consisted of 31 neurons recorded in-
vivo in mouse V1 using line scanning at ~12 Hz with OGB-1 as indicator. Dataset 3 consisted 
of 19 segments recorded from 11 neurons in-vivo in mouse V1 using the genetic calcium 
indicator GCamp6s with a resonance scanner at ~59 Hz. Finally, dataset 4 consisted of 9 
retinal ganglion cells recorded in-vitro at ~8 Hz using line-scanning with OGB-1 as indicator 
(Briggman and Euler, 2011). We resampled the calcium traces from all four datasets to a 
common resolution of 100 Hz. All datasets were acquired at a zoom factor commonly used in 
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population imaging such that the signal quality should match well that commonly 
encountered in these preparations (see Table 1). 

We compared the performance of our algorithm (STM) to that of algorithms representative of 
the different approaches (see Table 2 and Methods), including simple deconvolution (YF06, 
Yaksi and Friedrich, 2006), MAP (VP10, known as ‘fast-oopsi’, Vogelstein et al., 2010) and 
Bayesian inference (PP14, Pnevmatikakis et al., 2014; VP09, Vogelstein et al., 2009) in 
generative models, template-matching by finite rate of innovation (OD13, Oñativia et al., 
2013) and supervised learning using a support vector machine (SI08, Sasaki et al., 2008). To 
provide a baseline level of performance, we evaluated how closely the calcium trace followed 
the spike train without any further processing (raw).  

We focus on two measures of spike reconstruction performance to provide a quantitative 
evaluation of the different techniques: (i) the correlation between the original and the 
reconstructed spike train and (ii) the information gained about the spike train based on the 
calcium signal (see Methods). For completeness, we computed (iii) the area under the ROC 
curve (AUC), a threshold independent measure of the spike detection accuracy, which has 
repeatedly been used in the literature. We focus on correlation and information gain, 
however, since the AUC score is insensitive to changes in the relative height of different 
parts of the spike density function (e.g. high rates could be consistently overestimated 
compared to low rates; for a more technical discussion, see Methods). 

To provide a fair comparison between the different algorithms, we evaluated their 
performance using leave-one-out cross-validation: we estimated the parameters of the 
algorithms on all but one cell from a dataset and tested them on the one remaining neuron, 
repeating this procedure for each neuron in the dataset (cross-validation; see Methods). For 
the algorithms based on generative models, we selected the hyperparameters during cross-
validation (VP10, VP09) or using a sampling based approach (PP14; see Methods). 

Supervised learning sets benchmark 
We found that the spike density function predicted by our algorithm matched the true spike 
train closely, for cells from each dataset including both indicators OGB-1 and GCamp6 (Fig. 
1c-f). The other tested algorithms generally showed worse prediction performance: For 
example, YF06 typically resulted in very noisy estimates of the spike density function (Fig. 
1c-f) and both VP10 and PP14 frequently missed single spikes (Fig. 1d-f, marked by 
asterisk) and had difficulties modeling the dynamics of the GCamp6 indicator (Fig. 1e). 

Figure 2: Quantitative evaluation of spike inference performance  

A quantitative comparison revealed that our STM method reconstructed the true spike trains 
better than all its competitors, yielding a consistently higher correlation and information gain 
for all four datasets (Fig. 2a, b; evaluated at 25 Hz; for statistics, see figure). The median 
improvement in correlation across all recordings achieved by the STM over its two closest 
competitors was 0.12 (0.07-0.14; median and bootstrapped 95%-confidence interval, N=75) 
for SI08 – the other supervised learning approach based on SVMs – and 0.1 (0.08-0.13) for 
PP14 – the Bayesian inference in a generative model – yielding a median improvement of 
33% and 32%, respectively. Similarly, the STM explained 6.8 (5.0-7.7; SI08) and 9.6 (8.1-
12.1; PP14) percent points more marginal entropy (measured by the relative information 
gain). When evaluated with respect to AUC, the performance of these two algorithms was 
about as good as that of the STM model (Suppl. Fig. 1), yielding a median difference in AUC 
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of -0.01 (-0.02-0.01) and 0.01 (-0.01-0.02). This is because the AUC is the least sensitive of 
the three measures, as discussed above. 

Figure 3: Spike inference performance as a function of frequency 

The performance advantage of our STM algorithm was not restricted to a particular choice of 
sampling rate: it performed better than all other methods for a wide range of sampling rates 
between 2 and 100 Hz, corresponding to time bins between 10 and several hundreds of 
milliseconds (Fig. 3). Its performance advantage was particularly large for high sampling 
rates (Fig. 3; also Suppl. Fig. 2), suggesting that the timing accuracy of our method is 
superior to that of other methods. Interestingly, VP10 (‘fast-oopsi’) performed similar to our 
method for low sampling rates, but its performance deteriorated consistently on all datasets 
to the performance level of VF06 with increasing sampling rates (Fig. 3). 

Figure 4: Evaluating model complexity 

The performance of the STM model could not be further improved using a more flexible 
multilayer neural network for modeling the non-linear rate function 𝜆𝑡 (Fig. 4 and Suppl. Fig. 
3). To test this, we replaced the STM model by a neural network with two hidden layer, but 
found that this change resulted in only marginal performance improvement (Fig. 4). In 
addition, we tested whether a much simpler linear-nonlinear model would suffice to model  
𝜆𝑡. We found that the STM model performed significantly better than the simple LNP model 
(Fig. 4 and Suppl. Fig. 3). Therefore, the choice of the STM for 𝜆𝑡 seems to provide a good 
compromise between flexibility of the model structure and generalization performance. 

Does the performance generalize to new datasets? 
Remarkably, the STM model was able to generalize to new data sets that were recorded 
under different conditions than the data used for training. To test this, we trained the 
algorithms on three of the datasets and evaluated it on the remaining one (Fig. 5a). This 
setup mimics the situation where no simultaneous spike-calcium recordings are available for 
a new preparation, scanning method or calcium indicator. 

Figure 5: Testing generalization performance 

The STM algorithm still showed better performance compared to all other algorithms (Fig. 
5b-c and Suppl. Fig. 4), including superior performance on the GCamp6-dataset when 
trained solely on the three OGB-datasets (Fig. 5b-c). This indicates that the algorithm may be 
directly applied on novel datasets without need for further training (see Discussion).  

Already a small training set of less than 10 cells was sufficient to achieve good performance 
for the STM model (Suppl. Fig. 5). We tested the prediction performance of the STM with 
training sets of various sizes and found that it saturated between 5 and 10 cells for all 
datasets, arguing that a few cells may suffice to directly adapt the model to new datasets.   

Comparisons on artificial data 
Surprisingly, the performance of the algorithms on simulated data was not predictive of the 
performance of the algorithms on the real datasets (Fig. 6). To test this, we simulated data 
from a simple biophysical model of calcium fluorescence generation (Fig. 6a, see Methods, 
Vogelstein et al., 2009). We then applied the same cross-validation procedure as before to 
evaluate the performance of the algorithms (Fig. 6b). Not surprisingly, we found that all 
algorithms based on this or a similar generative model (PP13, VP10, YF06) performed 
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remarkably well. Interestingly, even the algorithms that performed worse than the baseline 
model for the real data (OD13, VP09) showed good performance on the artificial data. The 
STM model was among the top-performing algorithms, in contrast to the other supervised 
learning algorithm (SI08). A direct comparison of the performance on the simulated dataset 
and the experimental data clearly illustrates that the former is not a good predictor of the 
latter (Fig. 6c).      

Figure 6: Evaluating algorithms on artificial data 

  



7 
 

Discussion 
We introduced a new flexible probabilistic model for inferring spikes from calcium traces 
based on supervised learning. We showed that this model performs better than all previously 
published algorithms for this problem, for a wide range of recording conditions including 
OGB-1 and GCamp6 as calcium indicators, different scanning techniques, neural tissues, 
and with respect to different metrics. Interestingly, two of the three best algorithms rely on 
supervised learning to infer the relationship between calcium signal and spikes, suggesting 
that a data-driven approach offers distinct advantages over approaches based on strong 
prior suppositions about the relationship between the two signals. 

The superior performance of our algorithm carried over to new datasets not seen during 
training, promising good spike inference performance even under experimental conditions 
where no simultaneous recordings are available. This is crucial, as this is often considered 
an important advantage of algorithms based on generative models. However, for new 
experimental conditions, the performance of this latter class of algorithms is by no means 
guaranteed and needs to be evaluated on a dataset with simultaneous recordings as well. In 
particular, if such an evaluation reveals poor performance, e.g. because the assumed 
generative model does not match the structure of the dataset at hand (as seen e.g. with the 
GCamp6 data; Fig. 1e and 2), the only way to improve the algorithm would be to adapt the 
generative model and modify the inference procedures accordingly, which may or may not be 
straightforward.  In contrast, any simultaneous data collected in the future can be readily 
used to retrain our supervised algorithm and further improve its spike prediction and 
generalization performance. In fact, our choice of the spike triggered mixture model for 
estimating spikes from calcium traces is motivated by its ability to automatically switch 
between different sub-models whenever the statistics of the data changes (Theis et al., 
2013). 

Our evaluation further shows that good spike inference performance on model data by no 
means guarantees good performance on real population imaging data (Fig. 6c).  We believe 
theoretical model based studies (Lütcke et al., 2013; Wilt et al., 2013) will remain useful to 
systematically explore how performance depends on model parameters, such as noise level 
or violations of the generative model, but will need to be followed up by systematic 
quantitative benchmark comparisons on datasets such as provided here. 

Our proposed method is solely concerned with the problem of spike inference, and does not 
infer the regions of interests (ROIs) from observed data. Rather, we assume that these are 
obtained by the experimenter through other semi-automatic or automatic techniques. 
Recently, several methods have been proposed to jointly infer ROIs and spikes (Diego and 
Hamprecht, 2014; Maruyama et al., 2014; Pnevmatikakis et al., 2014). These methods have 
the benefit that they exploit the full spatio-temporal structure of the problem of spike 
inference in calcium imaging and offer an unbiased approach for ROI placement. Since ROIs 
can also be placed using supervised learning (Valmianski et al., 2010), it should be feasible 
to develop supervised paradigms for simultaneous ROI placement and spike inference or 
combinations of unsupervised and supervised methods.   
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Methods 

Datasets 
Primary visual cortex (V1) – OGB-1 
We recorded calcium traces from neural populations in layer 2/3 of anesthetized wild type 
mice (male C57CL/6J, age: p40–p60) using a custom-built two-photon microscope using 
previously described methods (Cotton et al., 2013; Froudarakis et al., 2014). Briefly, the 
temperature of the mouse was maintained between 36.5 °C and 37.5 °C throughout the 
experiment using a homeothermic blanket system (Harvard Instruments). While recording we 
either provided no visual stimulation, moving gratings, or natural and phase scrambled 
movies as previously described (Froudarakis et al., 2014). A ~1 mm craniotomy was 
performed over the primary visual cortex of the mouse. The details of surgical techniques and 
anesthesia protocol have been described elsewhere (Cotton et al., 2013).  We then used 
bolus-loaded Oregon green BAPTA-1 (OGB-1, Invitrogen) as calcium indicator and the 
injections were performed by using a continuous-pulse low pressure protocol with a glass 
micropipette to inject ~300 μm below the surface of the cortex. The cortical window was 
sealed using a glass coverslip. After allowing 1h for the dye uptake we recorded calcium 
traces using a custom-built two-photon microscope equipped with a Chameleon Ti-sapphire 
laser (Coherent) tuned at 800 nm and a 20×, 1.0 NA Olympus objective. Scanning was 
controlled by either a set of galvanometric mirrors (Galvo) or a custom-built acousto-optic 
deflector system (AODs) (Cotton et al., 2013). The average power output of the objective was 
kept < 50 mW for galvanometric scanning and 120 mW for AODs. Calcium activity was 
typically sampled at ~12 Hz with the galvanometric mirrors and at ~320 Hz with the AODs. 
The field of view was typically 200x200x100µm and 250x250µm for AODs and galvanometric 
imaging, respectively, imaging dozens to hundreds of neurons simultaneously(Cotton et al., 
2013). To perform simultaneous loose-patch and two-photon calcium imaging recordings, we 
used glass pipettes with 5–7 MΩ resistance filled with Alexa Fluor 594 (Invitrogen) for 
targeted two-photon-guided loose cell patching of single cells. Spike times were extracted by 
thresholding. All procedures performed on mice were conducted in accordance with the 
ethical guidelines of the National Institutes of Health and were approved by the Baylor 
College of Medicine IACUC.  

Primary visual cortex (V1) – GCaMP6 
We recorded calcium traces from neural populations in layer 2/3 of isoflurane-anesthetized 
wild type mice (male C57CL/6J, age: p70-p80) using a resonant scanning microscope 
(ThorLabs). Surgical procedures were similar to those described in Reimer et al (2014). 
Briefly, mice were initially injected with approximately 1uL of 
AAV1.Syn.GCamp6s.WPRE.SV40 (University of Pennsylvania Vector Core) through a burr 
hole. The injection was performed with the pipette at a steep (~60 deg) angle, in order to 
infect cells in the cortex lateral to the injection site under an untouched region of the skull. 
The mice were allowed to recover and were returned to their cages. Three to five weeks 
later, a 3mm circular craniotomy was performed above the injection site and the craniotomy 
was sealed with a circular 3mm coverslip with a ~0.5 µm hole to allow pipette access to 
infected cells.  The temperature of the mouse was maintained between 36.5 °C and 37.5 °C 
throughout the experiment using a homeothermic blanket system (Harvard Instruments). 
Recordings were of spontaneous activity without visual stimulation. Calcium traces were 
recorded using a Chameleon Ti-sapphire laser (Coherent) tuned at 920 nm and a 16×, .85 
NA Nikon objective. The average power output of the objective was kept < 40 mW. To 
perform simultaneous loose-patch and two-photon calcium imaging recordings, we used 
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glass pipettes with 7–10 MΩ resistance filled with ACSF and Alexa Fluor 594 (Invitrogen) as 
described above. Calcium traces were extracted after manually segmenting patched cells 
and spike times were extracted by thresholding after excluding any periods where the patch 
was deemed unstable or of low quality. All procedures performed on mice were conducted in 
accordance with the ethical guidelines of the National Institutes of Health and were approved 
by the Baylor College of Medicine IACUC. 

Retina 
Imaging experiments were performed as described previously (Briggman and Euler, 2011). 
In short, the retina was enucleated and dissected from dark-adapted wild-type mice (both 
genders, C57BL/6J, p21-42), flattened, mounted onto an Anodisc (13, 0.1 mm pores, 
Whatman) with ganglion cells facing up, and electroporated with Oregon green BAPTA-1 
(OGB-1, Invitrogen). The tissue was placed under the microscope, where it was constantly 
perfused with temperated (36°C) carboxygenated (95% O2, 5% CO2) artificial cerebral spinal 
fluid (ACSF). Cells were left to recover for at least 1 hour before recordings were performed. 
We used a MOM-type two-photon microscope equipped with a mode-locked Ti:sapphire 
laser (MaiTai-HP DeepSee, Newport Spectra-Physics) tuned to 927 nm(Euler et al., 2009). 
OGB-1 Fluorescence was detected at 520 BP 30 nm (AHF) under a 20x objective (W Plan-
Apochromat, 1.0 NA, Zeiss). Data were acquired with custom software (ScanM by M. Müller 
and T. Euler running under IgorPro 6.3, Wavemetrics), taking 64 x 64 pixel images at 7.8 Hz. 
Light stimuli were presented through the objective from a DLP projector (K11, Acer), fitted 
with band-pass-filtered LEDs (amber, z 578 BP 10; and blue/UV, HC 405 BP 10, 
AHF/Croma), synchronized with the microscope’s scanner. Stimulator intensity (as 
photoisomerization rate, 104 R*/s/cone) was calibrated as described to range from 0.1 (LEDs 
off) to ~1.3 (ref (Euler et al., 2009)). Mostly due to two-photon excitation of photopigments, 
an additional, steady illumination component of ~104 R*/s/cone was present during the 
recordings. The field of view was 100x100µm, imaging 50-100 cells in the ganglion cell layer 
simultaneously(Briggman and Euler, 2011). For juxtacellular spike recordings, OGB-1 
labeled somata were targeted with a 5 MΩ glass-pipette under dim IR illumination to 
establish a loose (<1GΩ) seal. Signals were amplified using an Axopatch 200A amplifier 
(Molecular Devices) in I=0 mode and digitized at 10 kHz on a Digidata 1440A (Molecular 
Devices). Imaging and spike data were aligned offline using a trigger signal recorded in both 
acquisition systems, and spike times were extracted by thresholding. All procedures were 
performed in accordance with the law on animal protection (Tierschutzgesetz) issued by the 
German Federal Government and were approved by the institutional animal welfare 
committee of the University of Tübingen. 

Preprocessing 
We normalized the sampling rate of all fluorescence traces and spike trains to 100 Hz, 
resampling to time bins of 10 ms. This allowed us to apply models across datasets 
independent of which dataset was used for training. We removed linear trends from the 
fluorescence traces by fitting a robust linear regression with Gaussian scale mixture 
residuals. That is, for each fluorescence trace 𝐹𝑡, we found parameters 𝑎, 𝑏,𝜋𝑘, and 𝜎𝑘 with 
maximal likelihood under the model 

𝐹𝑡 = 𝑎𝑎 + 𝑏 +  𝜀𝑡 ,               𝜀𝑡 ∼ � 𝜋𝑘
𝑘=1…𝐾

𝒩� ⋅ ; 0,𝜎𝑘2�,  

and computed 𝐹𝑡� = 𝐹𝑡 − 𝑎𝑎 − 𝑏 . We used three different noise components ( 𝐾 = 3). 
Afterwards, we normalized the traces such that the 5th percentile of each trace’s fluorescence 



10 
 

distribution is at zero, and the 80th percentile is at 1. Normalizing by percentiles instead of the 
minimum and maximum is more robust to outliers and less dependent on the firing rate of the 
neuron producing the fluorescence. 

Supervised learning in flexible probabilistic models for spike inference 
We predict the number of spikes 𝑘𝑡 falling in the 𝑎-th time bin of a neuron’s spike train based 
on 1000 ms windows of the fluorescence trace centered around 𝑎  (preprocessed 
fluorescence snippets 𝒙𝑡). To reduce the risk of overfitting and to speed up the training 
phase of the algorithm, we reduced the dimensionality of the fluorescence windows via PCA, 
keeping enough principal components to explain at least 95% of the variance (which resulted 
in 8 to 20 dimensions, depending on the dataset). Keeping 99% of the variance and slightly 
regularizing the model’s parameters gave similar results but was slower. 

We assume that the spike counts 𝑘𝑡 given the preprocessed fluorescence snippets 𝒙𝑡 can be 
modeled using a Poisson distribution, 

𝑝( 𝑘𝑡 ∣∣ 𝒙𝑡 ) =  
𝜆(𝒙𝑡)𝑘

𝑘!
𝑒−𝜆(𝒙𝑡). 

 

We tested three models for the firing rate 𝜆(𝒙𝑡) function:  

(1) A spike-triggered mixture (STM) model (Theis et al., 2013) with exponential 
nonlinearity, 

𝜆STM(𝒙𝑡) =  � exp�� 𝛽𝑘𝑘(𝒖𝑘⊤ 𝒙𝑡)2 + 𝒘𝑘
⊤𝒙𝑡 + 𝑏𝑘

𝑀

𝑘=1

� ,
𝐾

𝑘=1

 

where 𝒘𝑘 are linear filters,  𝒖𝑘 are quadratic filters weighted by 𝛽𝑘𝑘 for each of 𝐾 
components, and 𝑏𝑘 is a offset for each component. We used three components and 
two quadratic features (𝐾 = 3, 𝑀 = 2). The performance of the algorithm was not 
particularly sensitive to the choice of these parameters (we evaluated 𝐾 = 1, … 4 and 
𝑀 = 1, … ,4 in a grid search). 

(2) As a simpler alternative, we use the linear-nonlinear-Poisson (LNP) neuron with 
exponential nonlinearity, 

𝜆LNP(𝒙𝑡) = exp(𝒘⊤𝒙𝑡 + 𝑏), 

where 𝒘 is a linear filter and 𝑏 is an offset. 

(3) As a more flexible alternative, we used a multi-layer neural network (ML-NN) with two 
hidden layers, 

𝜆ML−NN(𝒙𝒕) = exp(𝒘3
⊤𝑔(𝑾2𝑔(𝑾1𝒙𝑡 + 𝒃1) + 𝒃2) + 𝑏3) 

, 

where 𝑔(𝒚) = max (0,𝒚) is a point-wise rectifying nonlinearity and 𝑾1 and 𝑾2 are matrices. 
We tested MLPs with 10 and 5 hidden units, and 5 and 3 hidden units for the first and second 
hidden layer, respectively. Again, the performance of the algorithm was not particularly 
sensitive to these parameters. 
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Parameters of all models were optimized by maximizing the average log-likelihood for a 
given training set, 

1
𝑁
� log𝑝(𝑘𝑡 ∣∣ 𝒙𝑡 ),
𝑁

𝑛=1

 

using limited-memory BFGS (Byrd et al., 1995), a standard quasi-Newton method. To 
increase robustness against potential local optima in the likelihood of the STM and the ML-
NN, we trained four models with randomly initialized parameters and geometrically averaged 
their predictions. The geometric average of several Poisson distributions again yields a 
Poisson distribution whose rate parameter is the geometric average of the rate parameters of 
the individual Poisson distributions. 

Other algorithms 
SI08 
This approach is based on applying a support-vector machine (SVM) on two PCA features of 
preprocessed segments of calcium traces. We re-implemented the features following closely 
the procedures described in (Sasaki et al., 2008). As the prediction signal, we used the 
distance of the input features to the SVM’s separating hyperplane, setting negative 
predictions to zero. We cross-validated the regularization parameter of the SVM but found 
that it had little impact on performance. 

PP14 
The algorithm performs Bayesian inference in a generative model, using maximum a 
posteriori (MAP) estimates for spike inference and MCMC on a portion of the calcium trace 
for estimating hyperparameters. We used a Matlab implementation provided by the authors 
of (Pnevmatikakis et al., 2014). We also tried selecting the hyperparameters through cross-
validation, which did not substantially change the overall results. 

VP10 
The fast-oopsi or non-negative deconvolution technique constrains the inferred spike rates to 
be positive (Vogelstein et al., 2010), performing approximate inference in a generative 
model. We used the implementation provided by the author 1 . We adjusted the 
hyperparameters using cross-validation by performing a search over a grid of 54 parameter 
sets controlling the degree of assumed observation noise and the expected number of spikes 
(Fig. 2a-b). In Fig. 5b-c the hyperparameters were instead directly inferred from the calcium 
traces by the algorithm. 

YF06 
The deconvolution algorithm (Yaksi and Friedrich, 2006) removes noise by local smoothing 
and the inverse filter resulting from the calcium transient. We used a Matlab implementation 
provided by the authors. Using the cross-validation procedure outlined above, we 
automatically tuned the algorithm by testing 66 different parameter sets. The parameters 
controlled the cutoff frequency of a low-pass filter, a time constant of the filter used for 
deconvolution, and whether or not an iterative smoothing procedure was applied to the 
fluorescence traces. 

OD13 

                                                
1 https://github.com/jovo/fast-oopsi 
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This algorithm performs a template-matching based approach by using the finite rate of 
innovation-theory as described in (Oñativia et al., 2013). We used the implementation 
provided on the author’s homepage2. We adjusted the exponential time constant parameter 
using cross-validation. 

VP09 
This algorithm performs Bayesian inference in a generative model as described in 
(Vogelstein et al., 2009). We used the implementation provided by the author3. Since this 
algorithm is based on the same generative model as fast-oopsi but is much slower, we used 
the hyperparameters inferred by cross-validating fast-oopsi in Fig. 2a-b and the 
hyperparameters automatically inferred by the algorithm in Fig. 5b-c. 

Performance evaluation 
We evaluated the performance of the algorithms on spike trains binned at 40 ms resolution, 
i.e. a sampling rate of 25 Hz. For Fig. 3 and Suppl. Fig. 2, we changed the bin width between 
10 ms (i.e. 100 Hz) and 500 ms (i.e. 2 Hz). We used cross-validation to evaluate the 
performance of our framework, i.e. we estimated the parameters of our model on a training 
set, typically consisting of all but one cell for each dataset, and evaluated its performance on 
the remaining cell. This procedure was iterated such that each cell was held out as a test cell 
once. Results obtained using the different training and test sets were subsequently 
averaged.   

Correlation 
We computed the linear correlation coefficient between the true binned spike train and the 
inferred one. This is a widely used measure with a simple and intuitive interpretation, taking 
the overall shape of the spike density function into account. However, the correlation 
coefficient is invariant under affine transformations, which means that predictions optimized 
for this measure cannot be directly interpreted as spike counts or firing rates. In further 
contrast to information gain, it also does not take the uncertainty of the predictions into 
account. That is, a method which predicts the spike count to be 5 with absolute certainty will 
be treated the same as a method which experts the spike count to be somewhere between 0 
and 10 assigning equal probability to each possible outcome. 

Information gain 
The information gain provides a model based estimate of the amount of information about 
the spike train extracted from the calcium trace. Unlike AUC and correlation, it takes into 
account the uncertainty of the prediction.  

Assuming an average firing rate of 𝜆 and a predicted firing rate of 𝜆𝑡 at time 𝑎, the expected 
information gain (in bits per bin) can be estimated as 

𝐼𝑔 =
1
𝑇
�𝑘𝑡 log2

𝜆𝑡
𝜆

+ 𝜆 −
1
𝑇
�𝜆𝑡
𝑡𝑡

 

assuming Poisson statistics and independence of spike counts in different bins. The 
estimated information gain is bounded from above by the (unknown) amount of information 
about the spike train contained in the calcium trace, as well as by the marginal entropy of the 
spike train, which can be estimated using 

                                                
2 http://www.commsp.ee.ic.ac.uk/%7Epld/software//ca_transient.zip 
3 https://github.com/jovo/smc-oopsi 
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𝐻𝑘 =
1
𝑇
� log(𝑘𝑡 !)
𝑡

− 𝜆 log 𝜆 + 𝜆. 

We computed a relative information gain by dividing the information gain averaged over all 
cells by the average estimated entropy, 

∑ 𝐼𝑔
(𝑛)

𝑛

∑ 𝐻𝑘
(𝑛)

𝑛
 , 

where 𝐼𝑔
(𝑛) is the information gain measured for the 𝑛-th cell in the dataset. 

This can be interpreted as the fraction of entropy in the data explained away by the model 
(measured in percent points). Since only our method was optimized to yield Poisson firing 
rates, we allowed all methods a single monotonically increasing nonlinear function, which we 
optimized to maximize the average information gain over all cells. That is, we evaluated    

1
𝑇
�𝑘𝑡 log2

𝑓(𝜆𝑡)
𝜆

+ 𝜆 −
1
𝑇
�𝑓(𝜆𝑡)
𝑡𝑡

, 

where 𝑓 is a piecewise linear monotonically increasing function optimized to maximize the 
information gain averaged over all cells (using an SLSQP implementation in SciPy).  

AUC 
The AUC score can be computed as the probability that a randomly picked prediction for a 
bin containing a spike is larger than a randomly picked prediction for a bin containing no 
spike (Fawcett, 2006). While this is a commonly used score for evaluating spike inference 
procedures (Vogelstein et al., 2010), it is not sensitive to changes in the relative height of 
different parts of the spike density function, as it is invariant under arbitrary strictly 
monotonically increasing transformations. For example, if predicted rates were squared, high 
rates would be overproportionally boosted compared to low rates, while yielding equivalent 
AUC scores. 

Statistical analysis  
We used generalized Loftus & Masson standard errors of the means for repeated measure 
designs (Franz and Loftus, 2012) and report the mean ± 2 SEM. To assess statistical 
significance, we compare the performance of the STM model to the performance of its next 
best competitor, performing a one-sided Wilcoxon signed rank test and report significance or 
the respective p-value above a line spanning the respective columns. If the STM is not the 
best model, we perform the comparison between the best model and the STM, coding the 
comparison in the color of the model. 

Generation of artificial data 
We simulated data by sampling from the generative model used by Vogelstein et al. (2010). 
That is, we first generated spike counts by independently sampling each bin of a spike train 
from a Poisson distribution, then convolving the spike train with an exponential kernel to 
arrive at an artificial calcium concentration, and finally adding Poisson noise to generate a 
Fluorescence signal 𝑥𝑡 . 

𝑘𝑡 ~ Poisson(𝜆), 
𝐶𝑡 = 𝛾𝐶𝑡 + 𝑘𝑡 , 
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𝑥𝑡 ~ Poisson(𝑎 𝐶𝑡 +  𝑏). 

The firing rate 𝜆 for each cell was randomly chosen to be between 0 and 400 spikes per 
second. The parameters 𝛾, 𝑎, and 𝑏 were fixed to 0.98, 100 and 1, respectively, and data 
was generated at a sampling rate of 100 Hz. 

Code and data sharing 
All analysis was done in Python. We provide a Python implementation of our algorithm online 
(www.bethgelab.org/code/spikeinference) 4 .  

                                                
4 Please note that we are also preparing a Matlab implementation which will be released at a later 
point in time.  

http://www.bethgelab.org/code/spikeinference
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Table 1: Datasets 
Data
set Area n Indicator Scan 

frequency  
Scanning 
method #spikes sp/s Field of view 

1 V1 16 OGB-1 322.5 ± 
53.2 3D AOD 19,876 1.86 200x200 

x100 µm³ 
2 V1 31 OGB-1 11.8 ± 0.9 2D galvo scan 32,385 2.47 250x250 µm² 

3 V1 19 * 
(11) GCamp6s 59.1 2D resonant 23,974 2.58 265x265 µm² 

135x135 µm² 
4 Retina 9 OGB-1 7.8 2D galvo scan 12,488 4.36 100x100 µm² 
* For this dataset, 19 recordings were performed on 11 neurons 

 

 

 

Table 2: Algorithms 
Algorithm Approach Technique Reference 
STM Supervised STM This paper 
SI08 Supervised PCA+SVM (Sasaki et al., 2008) 
PP14 Generative MCMC sampling (Pnevmatikakis et al., 2014)  
OD13 Template matching Finite rate innovation (Oñativia et al., 2013) 
VP10 Generative MAP estimation (Vogelstein et al., 2010) 
VP09 Generative SMC sampling (Vogelstein et al., 2009) 
YF06 Generative Deconvolution (Yaksi and Friedrich, 2006) 
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Figure captions 

 

 

 

 
  

Figure 1: Spike inference from 
calcium measurements  
a) Schematic of the probabilistic STM 

model.  
b) Simultaneous recording of spikes 

and calcium fluorescence traces in 
primary visual cortex of anesthetized 
mice. Green: Cells labeled with 
OGB-1 indicator. Red: Patch pipette 
filled with Alexa Fluor 594. Scale 
bar: 50 µm. 

c) Example cell recorded from V1 
using AOD scanner and OGB-1 as 
indicator. From top to bottom: 
Calcium fluorescence trace, spikes, 
spike rate at 25 Hz (grey), inferred 
spike rate using the STM model 
(black), SI08, PP14, VP14 and 
YF06. All traces were scaled 
independently for clarity. On the 
right, correlation between the 
inferred and the original spike rate is 
shown.  

d) Example cell recorded from V1 
using galvanometric scanner and 
OGB-1 as indicator. For legend, see 
c).  

e) Example cell recorded from V1 
using resonance scanner and 
GCamp6s as indicator. Note the 
different indicator dynamics. For 
legend, see c).  

f) Example cell recorded from the 
retina using galvanometric scanner 
and OGB-1 as indicator. For legend, 
see c). 
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Figure 2: Quantitative evaluation of spike inference performance 
a) Correlation (mean± 2 SEM for repeated measure designs) between the true spike rate 

and the inferred spike density function for different algorithms (see legend for color code) 
evaluated on the four different datasets (with n=16, 31, 19 and 9, respectively). Markers 
above bars show the result of a Wilcoxon sign rank test between the STM model and its 
closest competitor (see Methods, * denotes P<0.05, ** denotes P<0.01). 

b) Information gained about the true spike train by observing the calcium trace, evaluated 
for different algorithms. 
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Figure 3: Spike inference performance as a function of frequency 
Correlation (mean ± 2 SEM for repeated measure designs) between the true and inferred 
spike rate as a function of frequency for all four datasets (a-d) with n=16, 31,19 and 9, 
respectively. See legend for color code.  
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Figure 4: Evaluating model complexity 
a) Correlation (mean ± 2 SEM for repeated measure designs) between the true and inferred 

spike rate comparing the STM model (black) with a flexible multilayer neural network 
(dark grey) and a simple LNP model (light grey) evaluated on the four different datasets 
(with n=16, 31, 19 and 9, respectively). Markers above bars show the result of a 
Wilcoxon sign rank test between the STM model and the LNP model (see Methods, * 
denotes P<0.05, ** denotes P<0.01). 

b) Information gained about the true spike train by observing the calcium trace performing 
the same model comparison described in a). 
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Figure 5: Testing generalization performance 
a) Schematic illustrating the generalization setup: The algorithms are trained on all cells 

from three datasets (here: all but the GCamp dataset) and evaluated on the remaining 
dataset (here: the GCamp dataset), testing how well its performance carries over to 
datasets it has not seen during training. 

b) Correlation (mean± 2 SEM for repeated measure designs) between the true spike rate 
and the inferred spike density function for a subset of the algorithms (see legend for color 
code) evaluated on each of the four different datasets (with n=16, 31, 19 and 9, 
respectively), trained on the remaining three. Markers above bars show the result of a 
Wilcoxon sign rank test between the STM model and its closest competitor (see Methods, 
* denotes P<0.05, ** denotes P<0.01). 

c) Information gained about the true spike train by observing the calcium trace performing 
the generalization analysis described in a). 
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Figure 6: Evaluating algorithms on artificial data 
a) Example trace sampled from a generative model, true spikes and binned rate as well as 

reconstructed spike rate from four different algorithms (conventions as in Fig. 1). 
Numbers on the right denote correlations between true and inferred spike trains. 

b) Correlation (mean± 2 SEM for repeated measure designs) and information gain 
computed on a simulated dataset with 20 traces. For algorithms see legend. 

c) Scatter plot comparing performance on simulated data with that on real data (averaged 
over cells from all datasets), suggesting little predictive value of performance on 
simulated data. 
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