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Abstract—We consider channel simulation protocols between
two communicating parties, Alice and Bob. First, Alice re-
ceives a target distribution Q, unknown to Bob. Then, she
employs a shared coding distribution P to send the mini-
mum amount of information to Bob so that he can simulate
a single sample X ∼ Q. For discrete distributions, Harsha
et al. [1] developed a well-known channel simulation proto-
col – greedy rejection sampling (GRS) – with a bound of
DKL[Q‖P ] + 2 ln(DKL[Q‖P ] + 1) +O(1) on the expected code-
length of the protocol. In this paper, we extend the definition
of GRS to general probability spaces and allow it to adapt its
proposal distribution after each step. We call this new procedure
Adaptive GRS (AGRS) and prove its correctness. Furthermore,
we prove the surprising result that the expected runtime of
GRS is exactly exp(D∞[Q‖P ]), where D∞[Q‖P ] denotes the
Rényi ∞-divergence. We then apply AGRS to Gaussian channel
simulation problems. We show that the expected runtime of GRS
is infinite when averaged over target distributions and propose
a solution that trades off a slight increase in the coding cost
for a finite runtime. Finally, we describe a specific instance of
AGRS for 1D Gaussian channels inspired by hybrid coding [2].
We conjecture and demonstrate empirically that the runtime of
AGRS is O(DKL[Q‖P ]) in this case.

I. INTRODUCTION

Channel simulation is a two-party communication problem

between Alice and Bob [1] [3] [4]. Before communication,

they share a coding distribution P and are assumed to have

access to an infinite sequence of publicly available fair coin

flips. During one round of communication, Alice receives a

target distribution Q and sends a number of bits to Bob so that

he can simulate a single sample X ∼ Q. We want the number

of bits to be as small as possible. In the following, we will

also be interested in the computational cost of generating the

bits.

One-shot channel simulation (OSCS) recently began gar-

nering interest outside of information theory, especially in the

learned compression and differential privacy communities [5]

[6] [7] [8] [9] [10]. Many of the central problems in these

fields, such as compressing data using probabilistic models

[6] [7] [10], or compressing the models themselves [5], can be

cast as instances of OSCS. However, the instances of OSCS

that arise in these situations involve very high-dimensional

distributions and can have high information content as mea-

sured by DKL[Q‖P ]. Hence, it is crucial to understand the

computational complexity of channel simulation protocols’ en-

coding and decoding processes, not just their communication

efficiency. Assuming RP 6= NP, Agustsson & Theis [7] showed

that distributions exist for which the computational cost of

Algorithm 1: Adaptive greedy rejection sampling.

When Bk = Ω for every k, the algorithm is just greedy

rejection sampling [1]. See Section II for notation.

Input : Target Q, proposal P , bounds (B1,B2, . . . )
L0,S1 ← (0, 1)
for k = 1 to ∞ do

Xk ∼ P |Bk

Uk ∼ U [0, 1]

βk ←
r
P (Bk) ·

(
dQ
dP (Xk)− Lk−1

)/

Sk

z

if Uk ≤ βk then
return Xk, k

end

Lk ← Lk−1 + Sk/P (Bk)

Hk ←
{

y ∈ Ω | Lk ≤
dQ
dP (y)

}

Sk+1 ← Q(Hk)− Lk · P (Hk)
end

encoding a sample grows at least as exp(DKL[Q‖P ]). Yet,

uniform distributions and one-dimensional Gaussian distribu-

tions can be simulated in O(D∞[Q‖P ]) or less [7] [9].

Contributions. In this paper, we analyze greedy rejection

sampling (GRS) [1] and its extensions, with a particular focus

on computational complexity. Our contributions are as follows:

• We extend the formulation of GRS from discrete to

arbitrary probability spaces and allow it to adapt to its

target distribution. We call the generalized algorithm

adaptive greedy rejection sampling (AGRS) and use GRS

to refer specifically to its non-adaptive version. We prove

that AGRS retains the same correctness and codelength

guarantees as Harsha et al.’s original algorithm [1].

• We prove that the expected runtime of GRS for a target Q
and proposal P is exactly exp(D∞[Q‖P ]). Surprisingly,

this matches the runtime of regular rejection sampling.

• We then consider a class of Gaussian channel simulation

problems and show that the expected runtime of GRS for

this class is infinite. To remedy this, we propose using

an overdispersed proposal distribution, which trades off a

slight increase in the coding cost for a finite, though still

exponentially scaling, runtime.

• Finally, we consider a particular instance of AGRS

inspired by hybrid coding to simulate one-dimensional

Gaussian channels. We conjecture and demonstrate nu-

merically that our proposed algorithm is correct and that

it scales linearly in DKL[Q‖P ] in the Gaussian case.

http://arxiv.org/abs/2304.10407v1


II. BACKGROUND

Notation: We denote the base 2 logarithm by log2 and the

natural logarithm by ln. We define [a : b]
def
= [a, b] ∩ Z for

a, b ∈ Z, and [n]
def
= [1 : n] for n ∈ N. For H ⊆ R and

c ∈ R, define c+H
def
= {x+ c | x ∈ H}. Let J·K be the [0, 1]-

clipping function: JxK def
= min{max{x, 0}, 1}. Let Q and P be

Borel probability measures over some Polish space Ω such that

Q≪ P with Radon-Nikodym derivative dQ/dP . For a dis-

crete random variable K , let H[K] denote its Shannon entropy

measured in nats. Define DKL[Q‖P ]
def
=
∫
ln dQ

dP (x) dQ(x)

and D∞[Q‖P ]
def
= ess supx∈Ω

{

ln dQ
dP (x)

}

, where the es-

sential supremum is taken with respect to P . Throughout

this paper we will assume that DKL[Q‖P ] < ∞. For a

positive measure µ over a measure space Ω, define its total

variation norm as ‖µ‖TV
def
= µ(Ω). For Borel sets A and

B, denote the measure of A under P restricted to B as

P |B(A)
def
= P (B)−1 ·

∫

A 1[x ∈ B] dP (x), where 1[·] is the

indicator function. Let U(A) denote the uniform distribution

over a set A. For example, U([0, 1)) is uniform on the unit

interval and U([n]) is uniform over the first n natural numbers.

Let N (µ, Σ) be the d-dimensional Gaussian measure with

mean µ and covariance Σ and, as a slight abuse of notation,

let N (x | µ, Σ) denote its density with respect to the standard

Lebesgue measure evaluated at x.

Channel Simulation: Let Alice and Bob be communicating

parties who share some coding distribution P and have access

to an infinite sequence of publicly available fair coin flips. For-

mally, the coin flips are a Bernoulli process BP = (b1, b2, . . .)
with mean 1/2. In one-shot channel simulation (OSCS), Alice

receives a target distribution Q and needs to send the minimum

information to Bob so that he can simulate a single sample

X ∼ Q. In particular, Bob is not interested in learning Q. If

we make no further assumptions about Q and P , this problem

is also known as relative entropy coding (REC) [6] [9]. On

the other hand, suppose we can identify the target family

with a class of conditional distributions X | Z ∼ QZ and

have Z ∼ π. In that case, this problem is also referred to

as reverse channel coding (RCC) [7] [2]. Since π defines

a distribution over problem instances, we can perform an

average-case analysis for RCC. We use the term OSCS to

refer to both REC and RCC. We first obtain results for the

REC setting, after which we analyze Gaussian RCC.

Greedy Rejection Sampling (GRS): GRS for discrete spaces

was proposed by Harsha et al. [1] and is so-called because it

accepts proposed samples as early as possible. That is, in each

step k it accepts candidate Xk ∼ P with the largest probability

possible while still maintaining correctness. In other words, it

greedily minimizes the survival probability Sk = P[K ≥ k],
where K is the random variable corresponding to the step in

which the sampler terminates. GRS maintains an increasing

sequence of levels Lk, which in turn define superlevel sets of

the density ratio Hk
def
=
{

y ∈ Ω | Lk ≤
dQ
dP (y)

}

. Then, GRS

accepts proposed samples Xk that fall into Hk−1 with high

probability, and rejects all samples that fall outside.

Channel Simulation with GRS: Alice can use GRS to solve

the OSCS problem by using BP to simulate her proposed

samples. She then sends the index K of her accepted sample

to Bob. Given K , Bob recovers XK by simulating the same

samples Alice did using BP , and accepting the Kth one. In

this paper, we generalize GRS in two ways: we extend it to

arbitrary probability spaces and allow the proposal distribu-

tions to adapt to the target. We develop all our results for the

generalized algorithm, after which we specialize them to GRS.

III. ADAPTIVE GREEDY REJECTION SAMPLING

In this section, we propose adaptive greedy rejection sampling

(AGRS) which allows the proposal distribution to change

between iterations. The key observation is that from step

k onwards, GRS will never accept a sample outside of the

superlevel set Hk−1; hence we can adapt the proposal P by

truncating it in such a way that it still contains Hk−1. A

similar observation is exploited by the hybrid coding scheme

proposed by Theis & Yosri [2]. However, hybrid coding only

adapts to the target Q once and is only applicable if Q has

bounded support. On the other hand, our scheme can adapt in

every step and does not require Q to have bounded support.

Let B1 ⊇ B2 ⊇ . . . be such that for all k ∈ N we have

Hk−1 ⊆ Bk. We refer to such a chain as the bounds used

by the sampler. Algorithm 1 has pseudocode for AGRS. By

setting Bk = Ω for all k, we recover regular GRS. To realize

the bounds, Bob requires additional information from Alice.

For certain shapes this information can be efficiently encoded

with dithered quantization. In Section IV, we elaborate on this

approach on the example of 1D Gaussians.

Let K now denote the random variable corresponding to

the termination step of AGRS, and XK the sample it outputs.

Then, our first result is that AGRS is correct, as it terminates

with probability 1 and its output follows the target distribution.

Theorem III.1. P[K <∞] = 1 and XK ∼ Q.

Proof. We first prove the following lemmas. Let r = dQ
dP .

Lemma III.1. Let Sk be as defined by Algorithm 1. Then

Sk = P[K ≥ k].

Proof. We prove the statement via induction. The base case

k = 1 holds trivially, since P[K ≥ 1] = 1 = S1 by definition.

Now, assume the statement holds for k ≤ n. We need to show

the statement holds for k = n + 1. By definition, P[K =
n | K ≥ n,Xn = xn] = βn(xn). Multiplying both sides by

Sn = P[K ≥ n], taking expectations with respect to Xn and

noting that P[K = n,K ≥ n] = P[K = n], we find that

P[K = n] =

∫

Bn

βn(x)
Sn

P (Bn)
dP (x)

=

∫

Bn

1[Ln−1 < r(x) < Ln](r(x) − Ln−1) dP (x)

+

∫

Bn

1[Ln < r(x)]
Sn

P (Bn)
dP (x)



= Q(Hn−1 \ Hn)− Ln−1P (Hn−1 \ Hn) +
SnP (Hn)

P (Bn)

= Q(Hn−1)−Q(Hn)− Ln−1P (Hn−1) + LnP (Hn) (1)

= Sn − Sn+1 = P (K ≥ n+ 1) + P (K = n)− Sn+1,

where the third equality holds because Hn−1 ⊆ Bn. Hence,

Sn+1 = P[K ≥ n+ 1], finishing the proof.

Lemma III.2. Let ∆k(A)
def
= Q(A) − P[K ≤ k,XK ∈ A].

Then, ∆k is a positive measure and limk→∞‖∆k‖TV = 0
implies Theorem III.1.

Proof. Let A be a Borel set. Then,

P[XK ∈ A] =
∞∑

k=1

P[K = k,Xk ∈ A]

= lim
k→∞

P[K ≤ k,XK ∈ A].

A computation analogous to Equation (1) shows that

P[K ≤ k,XK ∈ A] = Q(A)−Q(Hk ∩A) + LkP (Hk ∩ A).
Thus, we find that ∆k(A) = Q(Hk ∩ A) − LkP (Hk ∩ A),
which is positive by the definition of Hk. Since ∆k is positive,

we have ‖∆k‖TV = ∆k(Ω) = 1 − P[K ≤ k] = Sk+1. Thus,

limk→∞‖∆k‖TV = 0 implies P[K < ∞] = 1. Furthermore,

‖Q(A) − P[XK ∈ A]‖TV = limk→∞‖∆k‖TV = 0 implies

that the output distribution is Q, as required.

Lemma III.3. Sk+1 ≤ exp
(

−
∑k

n=1
P (Hn)
P (Bn)

)

.

Proof. By the definitions of Sk+1 and Lk,

Sk+1 = Q(Hk)− LkP (Hk)

= Q(Hk)− Lk−1P (Hk)−
SkP (Hk)

P (Bk)

≤ Q(Hk−1)− Lk−1P (Hk−1)−
SkP (Hk)

P (Bk)

≤ Sk

(

1−
P (Hk)

P (Bk)

)

.

Applying the inequality k times and noting that S1 = 1, we

find Sk+1 ≤
∏k

n=1

(

1− P (Hn)
P (Bn)

)

. For 0 ≤ c ≤ 1 we have

1−c ≤ exp(−c). We can apply this inequality to each factor of

the product as 0 ≤ P (Hn)/P (Bn) ≤ 1, since Hn ⊆ Bn.

To finish the proof, we examine the two possible be-

haviours of the sequence P (Hk)/P (Bk). Case 1: Assume

P (Hk)/P (Bk) → 0 as k → ∞. Since ∆k ≪ P |Bk
, this

implies ∆k(Hk) → 0. This further implies that ‖∆k‖TV =
∆k(Ω) → 0, since ∆k is entirely supported on Hk. Case

2: Assume P (Hk)/P (Bk) 6→ 0 as k → ∞. Then, since

it is a positive sequence, there exists ǫ > 0 for all k, such

that P (Hk)/P (Bk) ≥ ǫ. But then by Lemma III.3 we have

‖∆k‖TV = Sk+1 ≤ exp
(

−
∑k

n=1
P (Hn)
P (Bn)

)

≤ exp(−kǫ) → 0

as k→∞, which finishes the proof.

Theorem III.2. Define mk
def
= argminn∈[k]{Sn/P (Bn)}.

Then, E[lnK] ≤ DKL[Q‖P ] + E[lnP (BmK
)] + 1 + ln 2. In

particular, E[lnK] ≤ DKL[Q‖P ] + 1 + ln 2 for GRS.

Proof. Define αk(x)
def
= dP[K=k,Xk=x]

dP . Then,

E[lnK] = P[K = 1] ln 1 +
∞∑

k=2

P[K = k] lnk

=

∞∑

k=2

∫

Bk

αk(x) ln k dP (x). (2)

Next, we develop an appropriate bound for the integrand. Note,

that αk is supported on Hk−1. Then, for x ∈ Hk−1

r(x) ≥ (k − 1)

(

1

k − 1

k−1∑

n=1

Sn

P (Bn)

)

≥ (k − 1) min
n∈[k]

{
Sk

P (Bk)

}

.

Second, for k ≥ 2 we have ln k ≤ ln(k − 1) + ln 2. Hence,

ln k ≤ ln r(x) − ln(1− Tmk−1) + lnP (Bmk
) + ln 2.

Substituting this back into Equation (2) and simplifying:

E[lnK] ≤ DKL[Q‖P ] + E[lnP (BmK
)]− E[lnSmK

] + ln 2

≤ DKL[Q‖P ] + E[lnP (BmK
)] + 1 + ln 2,

where we used the fact that E[lnSmK
] ≥ E[lnSK ] and

a result from [1] that shows −E[lnSK ] ≤
∫ 1

0 ln
(

1
1−p

)

= 1.

This proves the first part of the theorem. For the second part,

we note that in GRS we set Bk = Ω for every k, from which

E[lnP (BmK
)] = 0, and the result follows.

Theorem III.2 can be used to show that in the RCC case,

when (X ,Z) ∼ PX,Z and AGRS is applied to targets PX|Z

and proposal PX , we have

H[K] ≤ C + ln(C + 1) + 3.63 (3)

where C = I[X ;Z] + E[lnP (BmK
)], using a similar argu-

ment as Li & El Gamal for their Theorem 1 in [11] (see

Appendix A).

Theorem III.3. E[K] ≤ exp(D∞[Q‖P ]), and we have

equality in the case of GRS.

Proof. To begin, note that

E[K] =
∞∑

k=1

P[K ≥ k] ≤
∞∑

k=1

Sk/P (Bk) = lim
k→∞

Lk. (4)

Next, we show the following lemma:

Lemma III.4. limk→∞ Lk = exp(D∞[Q‖P ]).

Proof. For convenience, let r∗
def
= exp(D∞[Q‖P ]). We show

the statement by proving an upper and a lower bound on the

limit. For the upper bound we use an inductive argument. For

the base case, observe that L0 = 0 ≤ r∗. Now assume Ln ≤
r∗. Then, for Ln+1 we have

Ln+1 = Ln + Sn+1/P (Bn+1)

= Ln + P (Bn+1)
−1(Q(Bn+1)− LnP (Bn+1))

≤ r∗,



where for the inequality we used the fact that

Q(Bn+1) =

∫

Bn+1

r dP ≤

∫

Bn+1

r∗ dP = r∗P (Bn+1).

Since by the above argument Lk ≤ r∗ for every k, the bound

also must hold for the limit.

We prove the lower bound via contradiction. The sequence

Lk is monotone increasing and is bounded from above by r∗,

hence it converges. Assume now, that limk→∞ Lk = r∗ − ǫ

for some ǫ > 0. Define C
def
=
{
x ∈ Ω | r(x) ≥ r∗ − ǫ

2

}
. Then,

Sk+1 = Q(Hk)− LkP (Hk)

≥ Q(C)− LkP (C)

≥
(

r∗ −
ǫ

2
− r∗ + ǫ

)

P (C)

=
ǫ

2
P (C),

where for the second inequality we used the fact that

Q(C) ≥ (r∗ − ǫ/2)P (C) by the definition of C and that

Lk ≤ r∗ − ǫ, since the Lk sequence is monotonically increas-

ing. Note, that since r∗ = ess sup r with respect to P , we must

have P (C) > 0. But now we find that for all k

Lk+1 − Lk =
Sk+1

P (Bk+1)
≥

ǫ

2
·

P (C)

P (Bk+1)
> 0,

hence Lk must diverge; a contradiction.

Applying Lemma III.4 to Equation (4) yields the first part

of the theorem. For the second part, we note that for GRS

Equation (4) holds with equality since Bk = Ω for all k.

IV. GAUSSIAN CHANNEL SIMULATION

In this section, we study the computational complexity of using

GRS to simulate Gaussian channels where the input to the

channel is also Gaussian distributed. Formally, let X be a d-

dimensional Gaussian random variable, such that

X | µ ∼ N (µ, ρ2I), µ ∼ N (0,σ2I),

hence, marginally, X ∼ N (0, (σ2+ρ2)I). In this setting, Alice

would first draw a mean µ, and Bob would like to simulate

a sample X | µ. We assume that Alice and Bob share the

marginal of X before communication. Then, by Theorem III.3,

E[K | µ] =

(
ρ2 + σ2

ρ2

)d/2

exp

(
‖µ‖2

2σ2

)

, (5)

Now, taking the expectation over µ ∼ N (0,σ2I), we find

E[K] =∞.

In essence, this occurs because the right-hand side of

Equation (5) increases too rapidly in ‖µ‖. To ameliorate

this problem, we use an overdispersed proposal distribution

N (m, (ρ2 + s2)I) instead, with some mean m and s2 > σ2.

Computing E[K | µ] and differentiating with respect to m,

we find that m = 0 is optimal for any s2. Plugging this back

into the expression for E[K | µ] and taking expectation with

respect to µ, we find

Eµ∼N (0,σ2I)[E[K | µ]] =

(
s2

s2 − σ2
·
ρ2 + s2

ρ2

)d/2

.

Differentiating with respect to s2, we find that the optimal

overdispersed variance is s2opt = σ2 + σ
√

ρ2 + σ2. Panel A

in Figure 1 illustrates how the runtime and coding cost scale

as we increase the overdispersion.

Implementing GRS for Gaussians: Here we describe how

GRS can be implemented efficiently on a computer for a

proposal Ps = N (0, (ρ2 + s2)I) and target Q = N (µ, ρ2I).
A direct calculation shows that

r(x)
def
=

dQ

dP
(x) = ζ · N (x | ν,κ2I),

where we defined

ν
def
= µ ·

s2 + ρ2

s2

κ
def
=

(s2 + ρ2) · ρ2

s2

ζ
def
=

(
s2 + ρ2

s2

)d

·
1

N (µ | 0, s2I)
.

Now, we turn our attention to Q(Hk) and Ps(Hk). First,

note that for x ∈ Hk, we have

− lnLk ≥ − ln r(x)

= − ln ζ +
d

2
ln 2π +

d

2
lnκ2 +

‖x− ν‖2

2κ2

After some rearranging, we get

‖x− ν‖2 ≤ R2
k

R2
k

def
= κ2

(
−2 lnLk + 2 ln ζ − d ln 2π − d lnκ2

)
,

i.e., the Hk sets will be spheres with center ν and radius Rk.

Assume now that Xk ∼ Ps. Then

Ps(Hk) = P
[
‖Xk − ν‖2 ≤ R2

k

]

= P

[

χ2

(

d,
‖ν‖2

ρ2 + s2

)

≤
R2

k

ρ2 + s2

]

,

where χ2(d,λ2) is a noncentral chi-square random variable

with d degrees of freedom and noncentrality parameter λ2.

The CDF of χ2(d,λ2) is readily available in modern numerical

statistics packages. An analogous argument shows that

Q(Hk) = P

[

χ2

(

d,
‖ν − µ‖2

ρ2

)

≤
R2

k

ρ2

]

.

We note that the above can be extended to non-isotropic

(Q,P ) pairs. In that case, the Hk sets are ellipsoidal and

Ps(Hk) and Q(Hk) can be expressed using the CDF of a

generalized chi-square random variable instead.

AGRS for Gaussian channels: While Algorithm 1 can adapt

to the target by using different bounds at each step, it is hard

to leverage this additional flexibility without making further

assumptions. To solve the OSCS problem, Bob needs to know
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Fig. 1. A: The effect of using an overdispersed proposal distribution on the runtime of simulating 4-dimensional Gaussians with GRS. The target distributions
all have variance 1 and the mean varies with standard deviation σ = 3. The proposal is Gaussian with variance s2 + 1. The optimal coding cost is achieved
when s = σ but the expected runtime becomes infinite. The plot on the right shows that choosing the optimal runtime (green dot) increases the coding
cost only slightly. B: Average runtime of GRS compared to Adaptive GRS applied to a 1-dimensional Gaussian target distribution whose variance is 1 and
whose mean varies with standard deviation σ. Here, each point on the horizontal axis corresponds to a different value of σ. For GRS, we used the optimally
overdispersed proposal distribution. For AGRS, no overdispersion was necessary. Additionally, each cluster (yellow or blue) corresponds to a fixed σ and
each point to a target distribution where we plotted the KL divergence against the expected runtime (estimated over 400 runs of AGRS with different random
seeds). AS* refers to the runtime of AS* coding from [9] averaged over 105 runs. C: Analysis of the coding cost. The amount of information contained in
K appears surprisingly constant and most of the information is contained in the bounds BK . The black line indicates the sum of the two terms.

at least some information about the bounds Alice used. Oth-

erwise Bob cannot decode Alice’s message. Here, we propose

a scheme for one-dimensional Gaussian channel simulation.

We conjecture and experimentally verify its correctness and

efficiency. Our method is inspired by hybrid coding [2] and

dithered quantization (DQ) [12] and is potentially applicable

to other distributions and multivariate problems.

First, let Q denote the family of possible targets under

consideration. In our case, Q = {N (µ, ρ2) | µ ∈ R} are one-

dimensional Gaussian distributions. We propose the following

set of bounds. Let H0
k be the kth level set computed for

N (0, ρ2) (H0
0

def
= Ω) and set Bk = Φ−1(ck + Φ(H0

k−1))
for some ck which depends on µ. Here, Φ is the CDF of

P , that is, the marginal distribution of the Gaussian sample,

N (0,σ2 + ρ2). To ensure the correctness of Algorithm 1,

we require that for every Q ∈ Q, there exists a ck so that

Hk−1 ⊆ Bk. Indeed, it is not hard to check that this holds for

k = 0, 1. We also verified numerically for several thousand

choices of Q that the relation holds for k ≥ 2.

For AGRS to be decodable, Alice and Bob need to be able to

simulate the same Xk ∼ P |Bk
. Fortunately, when Φ(Bk) are

intervals, they can use DQ along inverse transform sampling to

achieve precisely this at a coding cost of − log2 P (Bk)+O(1)
bits. This idea is essentially identical to how DQ is used for

hybrid coding [2] except that there the bounds are only adapted

once before sampling begins, while in our case the bounds can

change at each step of the sampling procedure.

We found empirically (Figure 1B) that using this sequence

of bounds lead to an exponential speed-up of Algorithm 1.

Based on our results, we conjecture that if our proposed AGRS

variant is correct, then its runtime is O(DKL[Q‖P ]).

The cost of encoding a sample consists of the cost of

encoding K plus the cost of communicating Xk ∼ P |Bk
. The

latter can be encoded with a variant of DQ based on bits-back

coding [13] at a cost close to E[− lnP (Bk)] (Appendix C).

Let N be the quantized representation produced by DQ. Then

the coding cost of AGRS is

H[K,N ] = H[K] +H[N | K]

≤ I[X ;µ] + E[lnP (BmK
)]− E[lnP (BK)]

+ ln(I[X ;µ] + E[lnP (BmK
)] + 1) +O(1).

Here we implicitly conditioned on the shared source of ran-

domness to reduce clutter. In practice, we found the coding

cost to be closer to I[X ;µ] + 2 (Figure 1C). Interestingly, we

also find that the majority of the information is contained in N
and that H [K] stays around 2 regardless of the choice of σ2.

V. DISCUSSION AND FUTURE WORK

In this paper, we generalised the greedy rejection sampling

algorithm first proposed by Harsha et al. [1] by extending it

to arbitrary probability spaces and allowing it to adapt to its

target distribution at each step. We showed that for a (Q,P )
target-proposal pair, the runtime of AGRS is upper bounded by

exp(D∞[Q‖P ]) with equality in the case of GRS. We studied

Gaussian RCC using GRS and proposed an overdispersion

scheme to ensure finite expected runtime of the algorithm at

the cost of a small increase in the coding cost. We proposed

an AGRS scheme for the 1D Gaussian case and conjectured

and empirically verified its correctness and runtime.

There are several open problems and avenues for future

work. First, the inequality DKL[Q‖P ] ≤ D∞[Q‖P ] can be

arbitrarily loose in general. Hence, we ask if there exists a

general channel simulation algorithm whose runtime scales

as O(exp(DKL[Q‖P ])), or if exp(D∞[Q‖P ]) is optimal.

Second, we ask if, and under what conditions Theorem III.2

and Theorem III.3 can be tightened. Finally, we leave the

correctness and runtime proofs of our proposed variant of

AGRS for one-dimensional Gaussians for future work.
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APPENDIX A

ENTROPY BOUND IN EQUATION (3)

We derive the bound in Equation (3). In the RCC case, when

(X ,Z) ∼ PX,Z and we apply AGRS to target PX|Z and

proposal PX , Theorem III.2 yields

E[lnK] ≤ EZ∼PZ

[
DKL[PX|Z‖PX ] + E[lnP (BmK

) | Z]
]

+ 1 + ln 2

= I[X ;Z] + E[lnP (BmK
)]

︸ ︷︷ ︸
def
=C

+1+ ln 2.

From [11], we know that

H2[K] ≤ E[log2 K] + log2(E[log2 K] + 1) + 1.

Switching to nats and applying the above equality for E[lnK]:

H[K] ≤ E[lnK] + ln(E[log2 K] + 1) + ln 2

= E[lnK] + ln

(
E[lnK]

ln 2
+ 1

)

+ ln 2

= E[lnK] + ln(E[lnK] + ln 2)− ln ln 2 + ln 2

≤ C + ln(C + 1 + 2 ln 2) + 1 + 2 ln 2− ln ln 2

≤ C + ln(C + 1) + 1 + 2 ln 2− ln ln 2 + ln(1 + 2 ln 2)

< C + ln(C + 1) + 3.63.

APPENDIX B

CODING COST OF AGRS FOR GAUSSIAN CHANNELS

Unlike in GRS, the index K produced by AGRS is not

sufficient to reconstruct the accepted candidate XK ∼ P |BK
.

For the case of the 1D Gaussian, we take

Bk = Φ−1(ck +Φ(H0
k−1))

and the receiver in general does not have access to ck. Follow-

ing Theis & Yosri [2], we assume that the missing information

is communicated using dithered quantization (DQ). To this

end, let Vk ∼ U [−0.5, 0.5) be generated from a shared source

of randomness BP and consider the following candidate

generating process,

Nk = ⌊ ck
P (Bk)

− Vk⌉,

Yk = (Nk + Vk)P (Bk),

Xk = Φ−1(Xk),

for all k ∈ N. We assume that the sender chooses ck such that

the support of Yk is contained in the interval [0, 1). While

the receiver does not know Bk, we have P (Bk) = |Φ(H0
k)|

independent of the target distribution and so the receiver is

able to compute XK after K and NK have been received.

DQ has the property that Yk ∼ ck+P (Bk)Vk [14], that is, Yk

is uniform over the interval ck +Φ(H0
k) and so Xk ∼ P |Bk

.

The sender transmits K and NK which the receiver uses to

reconstruct XK . To reduce clutter, define

N = NK , Y = YK , V = VK

for the relevant quantities at acceptance. Further, let

Z = N + V and let pZ|K be its density conditioned on K .

Then

pZ|K(z) = PN |K(⌊z⌉ | K)pV |N ,K(z − ⌊z⌉ | N = ⌊z⌉,K)
(6)

and pZ|K(z) = pY |K(P (BK)z)P (BK). We are interested in

H [(K,N) | BP] = H [K | BP] +H [N | K,BP]

≤ H [K] +H [N | K,V ].

For the second term, we have

H [N | K,V ]

= h[(N ,V ) | K]− h[V | K]

= E[− lnP (N | K)p(V | N ,K) | K]− h[V | K]

= E[− ln pZ|K(Z)]− h[V | K] (7)

= E[− ln pY |K(Y )]− E[lnP (BK)]− h[V | K]

= h[Y | K]− E[lnP (BK)]− h[V | K]

≤ E[− lnP (BK)]− h[V | K]

https://arxiv.org/abs/2111.00092
https://arxiv.org/abs/2206.08889
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Fig. 2. A: As in Figure 1 but using wider bounds so that 1/P (Bk) is always an integer. This allows efficient communication of information about the bounds
using dithered quantization without a need for bits-back coding. B: Illustration of AGRS on the example of a Gaussian distribution. On the right-hand side,
r = dQ/dP is plotted along with levels Lk as a function of Φ(x), where Φ is the CDF of P . On the left-hand side, the same quantities are visualized as
a function of x and using the Lebesgue measure as a base measure. That is, q = dQ/dλ and the yellow lines correspond to Lkp(x) where p = dP/dλ.
Additionally, the range of yellow lines is limited to Bk . Like GRS, AGRS slices the target distribution into a series of slices and targets one of the slices in
each iteration.

where we have applied the law of the unconscious statistician

together with Equation (6) in Equation (7) and the inequality

follows because Y is limited to the interval [0, 1). Note that

while the marginal distribution of Vk is uniform over a unit

interval for any fixed k, the marginal distribution of V may be

non-uniform if certain values of the dither are more likely to be

accepted. Hence, in general we only have h[V | K] ≤ 0. Theis

& Yosri [2] exploited that the accepted dither V is marginally

uniform when 1/P (Bk) are integers. In the following section,

we propose a modification to DQ which produces uniform V
even when 1/P (Bk) are not integers. For the 1D Gaussian

case, we find that good performance can be achieved without

BBQ by increasing intervals so that 1/P (Bk) is always an

integer (Figure 1). However, we expect that this approach does

not scale as well to multivariate problems as AGRS with BBQ.

APPENDIX C

BITS-BACK QUANTIZATION

We describe a channel simulation algorithm for a proposal P
and target P |B supported on R with asymptotic coding cost

− logP (B)+O(1), that we call bits-back quantization (BBQ).

For a graphical illustration of the procedure, see Figure 3. We

assume, that P has invertible CDF Φ and B = (u, v) is an

interval, where u, v ∈ R. We assume that P (B) = a/b with

a, b ∈ Z
+ and a ≤ b.

The problem can be reduced to sampling a uniform target

using a uniform proposal, as follows. Let

B
def
= Φ(B) = {Φ(x) | x ∈ B}.

WLOG, we may assume that B can be decomposed as

B = κ+ [0, a/b), κ ∈ [0, 1− a/b].

Since P (B) = Φ(v)−Φ(u), the above decomposition ensures

that |B| = P (B) = a/b, while the restriction on the range of

the offset κ ensures that B ⊆ [0, 1). Let X ∼ P |B and Y ∼

U(κ+ [0, a/b)). It is a standard result from inverse transform

sampling that

Φ−1(Y )
d
= X ,

where
d
= denotes equality in distribution. Therefore, we restrict

our attention to encoding Y , which can be transformed via

Φ−1 to follow the desired truncated distribution.

We begin by describing the special case of the problem

when a = 1. In this case, we use DQ directly to encode Y .

Recall, that for V ,V ′ ∼ U([−1/2, 1/2)) we have [12] [14]:

⌊c+ V ⌉ − V
d
= c+ V ′,

where we always round towards∞, i.e., ⌊x⌉
def
= ⌊x+ 1/2⌋ for

x ∈ R. Let us assume that Alice and Bob simulate V using

their shared source of randomness. Then, let

N
def
= ⌊b · κ+ V ⌉

Y
def
=

1

b
·

(

N − V +
1

2

)

.

Then, Y ∼ U(κ + [0, 1/b)) as desired. Since by assumption

κ ∈ [0, 1 − 1/b), we have N ∈ [0 : b − 1], thus Alice can

communicate N in ⌊log2 b⌋ ≤ log2 b + 1 = − log2 P (B) + 1
bits. Further, whenever Y is uniformly distributed over [0, 1),
then V = bY −N must be uniformly distributed over [0, 1).

We now consider an extension to the above scheme for

general a ∈ Z
+, a < b, in which case Y ∼ U(κ + [0, a/b)).

Or proposal is inspired by bits-back coding [13]. First, Alice

replicates the unit interval a times to obtain [0, a). She also

creates a copies of the offset, κi
def
= i+ κ for i ∈ [0 : a− 1].

Consider encoding the sample redundantly a times. If

Ni
def
=

⌊
b

a
· κi + V

⌉

Yi
def
=

a

b
·

(

Ni − V +
1

2

)
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Fig. 3. Bits-back Quantization encoding and decoding procedure for a target distribution of Q = U(κ + [0, 3/4)), i.e., a = 3 and b = 4. In the figure,
supp YI and suppκI denote the support of YI and κI , respectively. The encoding procedure begins in the top left with “Alice’s initial message m” and
follows the solid arrows. For a detailed description of the procedure and the notation, see Section C. We assume that Alice already has some message m
she wishes to communicate to Bob. We also assume that both Alice and Bob can simulate V with the publicly available randomness BP and they use the
same invertible sampler to encode and decode messages to/from m. Crucially, since Alice begins by decoding log2 3 bits from her message, at the end of
the encoding process her message length only increases by − log2 3/4 bits in total.

then

∀i ∈ [0 : a− 1], Y
d
= (Yi mod 1).

The significance of the above is that Alice has freedom

in choosing κi and she has no a priori preference. Hence,

we suggest that before encoding N , she first simulates

I ∼ U([0 : a− 1]) using an invertible sampler by decoding

log2 a bits from the message she plans to transmit to Bob.

We can use the algorithm in Bamler’s Listing 1 [13] for this.

Then, Alice transmits NI to Bob. Note, that

suppκI =

a−1⋃

j=0

[

j, j + 1−
a

b

]

, (8)

where suppκI denotes the support of κI . Hence, similarly

to the a = 1 case, NI can take b different values. Thus,

Alice requires log2 b bits to encode NI . While Bob technically

receives log2 b bits from Alice, he can recover the log2 a bits

Alice used to simulate I , as we show next. Once Bob decodes

NI , he computes YI , from which he can compute Y . However,

he can also use NI to compute a range in which κI must fall:

⌊
b

a
· κI + V

⌉

= NI

⇔
a

b
·

(

NI − V −
1

2

)

≤ κI <
a

b
·

(

NI − V +
1

2

)

⇔ YI −
a

b
≤ κI < YI

Let I(NI ,V ) denote the above interval, and note that its width

is a/b. However, Bob has a second piece of information at his

disposal, namely that κI is supported on the set defined in

Equation (8). Note, that for all 0 ≤ j < a − 1, the distance

between [j, j + 1− a/b] and [j + 1, j + 2− a/b] is precisely

a/b, meaning that I(NI ,V ) will intersect exactly one interval

in suppκI , namely [I, I + 1 − a/b). Two intervals intersect

each other if and only if the supremum of both is greater than

the infimum of the other, i.e.

[

I, I + 1−
a

b

]

∩
[

YI −
a

b
,YI

)

6= ∅

⇔ I < YI and YI −
a

b
≤ I + 1−

a

b
⇔ I < YI ≤ I + 1

⇔ I = ⌈YI⌉ − 1. (9)

Thus, Bob can recover I using Equation (9). He encodes I
back into his remaining message using the same invertible

sampler Alice used to decode. In total Bob receives log2 b



bits, but recovers log2 a bits, thus the communication cost of

this procedure is

log2 b − log2 a = − log2
a

b
= − logP (B),

as required.

Note: The boundary case YI = I + 1 occur almost never,

so in practice it is also reasonable to use I = ⌊YI⌋.
Finally, if YI is uniform over [0, a), then V = b

aYI − NI

must be uniform over [0, 1).
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